1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PolarNik [594]
4 years ago
8

The orientation in space of an atomic orbital is associated with

Physics
1 answer:
Lubov Fominskaja [6]4 years ago
4 0
<h2>Answer: The magnetic quantum number  </h2><h2></h2>

The magnetic quantum number M is one of the four quantum numbers that characterize the quantum state of an electron bound from an atom.  

This number determines the spatial orientation of the orbital and its name is due to the fact that this spatial orientation is normally defined in relation to an external magnetic field.

Therefore:

<h2>The orientation in space of an atomic orbital is associated with <u>the magnetic quantum number</u></h2>

You might be interested in
What is the formula for volume using density and mass
lawyer [7]

The definition of density is

                                                       Density                  = (mass) / (volume)

Multiply each side by 'volume' :    (density) x (volume) = (mass)

Divide each side by 'density' :                         Volume = (mass) / (density)
 

5 0
3 years ago
Read 2 more answers
how does the charge of a particle affect the direction in wich the particles deflected in a megnetic field
shtirl [24]
<span>Negatively charged particles will go toward the positive end of the magnetic field and positively charged particles will go toward the negative end.</span>
5 0
3 years ago
Read 2 more answers
A rock is thrown vertically upward from some height above the ground. It rises to some maximum height and falls back to the grou
True [87]

Answer:

At the highest point the velocity is zero, the acceleration is directed downward.

Explanation:

This is a free-fall problem, in the case of something being thrown or dropped, the acceleration is equal to -gravity, so -9.80m/s^2. So, the acceleration is never 0 here.

I attached an image from my lecture today, I find it to be helpful. You can see that because of gravity the acceleration is pulled downwards.

At the highest point the velocity is 0, but it's changing direction and that's why there's still an acceleration there.

6 0
4 years ago
Spring compressed 10cm by 100N force and held in place with Pin. Pin is pulled and block is pushed Up the incline. Uk(coefficien
otez555 [7]

The compression of 10 cm by a 100 N force on the plane that has a

coefficient of friction of 0.39 give the following values.

  • The velocity of the block after the Spring extends 7 cm is approximately 1.73 m/s
  • The height at which the block stops rising is approximately 1.1415 m
  • The length of the incline is approximately 1.536 m

<h3>How can the velocity and height of the block be calculated?</h3>

Mass of the block, m = 3 kg

Spring \ constant, K = \dfrac{100 \, N}{0.1 \, m}  = \mathbf{ 1000\, N/m}

Coefficient of kinetic friction, \mu_k = 0.39

Therefore, we have;

Friction force = \mathbf{\mu_k}·m·g·cos(θ)

Which gives;

Friction force = 0.39 × 3 × 9.81 × cos(48°) ≈ 7.68

Work done by the motion of the block, <em>W</em> ≈ 7.68 × d

The work done = The kinetic energy of the block, which gives;

\mathbf{\dfrac{1}{2} \times k \cdot x^2 }= 7.68 \cdot d

The initial kinetic energy in the spring is found as follows;

K.E. = 0.5 × 1000 N/m × (0.1 m)² = 5 J

The initial velocity of the block is therefore;

5 = 0.5·m·v²

v₁ = √(2 × 5 ÷ 3) ≈ 1.83

Work done by the motion of the block, <em>W</em> ≈ 7.68 N × 0.07 m ≈ 0.5376 J

Chane in kinetic energy, ΔK.E. = Work done

ΔK.E. = 0.5 × 3 × (v₁² - v₂²)

Which gives;

ΔK.E. = 0.5 × 3 × (1.83² - v₂²) = 0.5376

Which gives;

  • The velocity of the block after the Spring extends 7 cm, v₂ ≈ <u>1.73 m/s</u>

The height at which the block will stop moving, <em>h</em>, is given as follows;

At \ the \ maximum \ height, \ h, \ we \ have ; \  \dfrac{1}{2} \times 1000 \times 0.1^2 = 7.68 \times x

Which gives;

Length \ of \ the \ incline \ at \ maximum \ height, \ x_{max} =\dfrac{  7.68 }{ \dfrac{1}{2} \times 1000 \times 0.1^2  } \approx 1.536

The distance up the inclined, the block rises, at maximum height is therefore;

x_{max} ≈ 1.536 m

Therefore;

h = 1.536 × sin(48°) ≈ 1.1415

  • The height at which the block stops rising, h ≈ <u>1.1415 m</u>

From the above solution for the height, the length of the incline is he

distance along the incline at maximum height which is therefore;

  • Length of the incline, x_{max} = 1.536 m

Learn more about conservation of energy here:

brainly.com/question/7538238

5 0
2 years ago
What is the correct equation for calculating the average atomic mass for 3 isotopes? (pls be 100%of your answer pls no guessing)
mariarad [96]

<u>Answer:</u>

<em>The correct equation for measuring the average microscopic weight  for 3 isotopes is multiply the rate of abundance by each weight and add them.</em>

<u>Explanation:</u>

To calculate the average microscopic mass of element using weights and relative abundance we have to follow the following steps.

  • Take the correct weight of each isotope (that will be in decimal form)
  • Multiply the weight of each isotope by its abundance
  • Add each of the results together.

<em>This gives the required  average microscopic weight of the three isotopes.</em>

3 0
3 years ago
Other questions:
  • A circuit consists of a 171- resistor and a 0.158-H inductor. These two elements are connected in series across a generator that
    12·1 answer
  • People often break the speed limit and risk getting tickets and injury. On highway 5, people often drive 75mph when the legal sp
    10·1 answer
  • PLS HELP WORTH 100 POINTS!! Different things motivate different people. While you may be motivated to get good grades and get a
    5·2 answers
  • Object A weighs 750 N on earth. Object B weighs 750 N on Jupiter.
    12·1 answer
  • Please help me. Thank you!
    10·1 answer
  • The storage coefficient of a confined aquifer is 6.8x10-4 determined by a pumping test. The thickness of the aquifer is 50 m and
    9·1 answer
  • Entropy is the amount of heat a system releases. true or false?​
    12·2 answers
  • An electric pole shown in the figure below supports a power line that passes through it. A cable tied to the pole at B passes th
    7·1 answer
  • F?=75N,F?=40N,F?=75N,F?=90N.
    9·1 answer
  • Which applications, either for diagnostic purposes or for therapeutic purposes, involve the use of X-rays
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!