A motion in one dimension is a type of motion that is always along a straight line and has a constant acceleration.
Motion refers to a change in the location (position) of an object or physical body with respect to a reference point, especially due to the action of an external force.
In Science, the motion of an object or physical body is described in terms of the following parameters:
Furthermore, there are three (3) forms of motion based on dimension and these include:
1. Motion in one dimension
2. Motion in two dimension
3. Motion in three dimension
A motion in one dimension (one-dimensional motion) is also referred to as rectilinear or linear motion. Also, it is always along a straight line in any direction and characterized by constant acceleration.
Read more on motion here: brainly.com/question/17675825
Given:-
- Time taken by the particle (t) = 6 s
- Average speed (v) = 40 m/s
To Find: Distance (s) travelled by the particle.
We know,
s = vt
where,
- s = Distance travelled,
- v = Speed &
- t = Time taken.
Putting the values,
s = (40 m/s)(6 s)
→ s = 240 m ...(Ans.)
Inertia. It also is the tendency of an object in motion to stay in motion in one specific direction.
Answer:
(A) 
Explanation:
Given:
Charge of one particle (q₁) = -0.0050 C
Charge of another particle (q₂) = 0.0050 C
Separation between them (d) = 0.025 m
We know that, from Coulomb's law, electric force acting between two charged particles is given as:

Plug in the given values and solve for electric force,
. This gives,

Therefore, option (A) is correct. Negative sign implies that the nature of electric force is attraction.
Let m₁ = 3.0 kg and v₁ = + 8 m/s (so right is positive), and m₂ = 1.0 kg and v₂ = 0. The total momentum of the two balls before and after collision is conserved, so
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
where v₁' = + 5 m/s and v₂' are the velocities of the two balls after colliding, so
(3.0 kg) (8 m/s) = (3.0 kg) (5 m/s) + (1.0 kg) v₂'
Solve for v₂' :
24 kg•m/s = 15 kg•m/s + (1.0 kg) v₂'
(1.0 kg) v₂' = 9 kg•m/s
v₂' = (9 kg•m/s) / (1.0 kg)
v₂' = + 9 m/s
which is to say, the second ball is given a speed of 9 m/s to the right after colliding with the first ball.