Answer:
a) 0.64 b) 2.17m/s^2 c) 8.668joules
Explanation:
The block was on the ramp, the ramp was inclined at 20degree. A force of 5N was acting horizontal to the but not parallel to the ramp,
Frictional force = horizontal component of the weight of the block along the ramp + the applied force since the block was just about move
Frictional force = mgsin20o + 5N = 6.71+5N = 11.71
The force of normal = the vertical component of the weight of the block =mgcos20o = 18.44
Coefficient of static friction = 11.71/18.44= 0.64
Remember that g = acceleration due to gravity (9.81m/s^2) and m = mass (2kg)
b) coefficient of kinetic friction = frictional force/ normal force
Fr = 0.4* mgcos 20o = 7.375N
F due to motion = ma = total force - frictional force
Ma = 11.71 - 7.375 = 4.335
a= 4.335/2(mass of the block) = 2.17m/s^2
C) work done = net force *distance = 4.335*2= 8.67Joules
Answer: 3.9 MW
Explanation:
1 W = 1 J/s
260000 J/s (15 s) = 3,900,000 = 3.9 MW
Laccolith is a mushroom-shaped pluton that forms by injecting magma between sedimentary strata, forcing the upper layers to arch upward.
Answer: 3A
Explanation:
First, we must calculate voltage by summing the reciprocal of the resistances in the circuit
1/40 +1/40 = 2/40 = 1/20 = 1/R, so R = 20Ω
Using Ohm's Law, I = V/R, so the current I is I = 120/20 = 6A
Using Kerchoff's Circuit Law, we know that current will split evenly at a junction, so each resistor will get one half, or 3A.