For help with this answer, we look to Newton's second law of motion:
Force = (mass) x (acceleration)
Since the question seems to focus on acceleration, let's get
'acceleration' all alone on one side of the equation, so we can
really see what's going on.
Here's the equation again:
Force = (mass) x (acceleration)
Divide each side by 'mass',
and we have: Acceleration = (force) / (mass) .
Now the answer jumps out at us: The rate of acceleration of an object
is determined by the object's mass and by the strength of the net force
acting on the object.
Answer:
Explanation:the atom consists of a tiny nucleus at its center which is surrounded by a moving electrons. The nucleus contains a positively charged proton equal in size with the negatively charged electrons . The nucleus also may contain neutrons which have the same mass with the protons but no charge is neutral.
To solve the problem it is necessary to apply the concepts related to the voltage in a coil, through the percentage relationship that exists between the voltage and the number of turns it has.
So things our data are given by



PART A) Since it is a system in equilibrium the relationship between the two transformers would be given by

So the voltage for transformer 2 would be given by,

PART B) To express the number value we proceed to replace with the previously given values, that is to say



Answer:
option b
Explanation:
from the given formula, s=d/t
make t the subject of the formula we have
t=d/s
5/100
0.5
I think F= mv²/r
And F=ma
So, ma = mv²/r
a = v²/r
a = 100/5
a = 20 m/s