In the above word problem, If she chooses the 8-inch tiles, she will need a quarter as many tiles as she would with 2-inch tiles, Quarter 8-inch tiles will cover the same area as one 2-inches.
<h3>What is the justification for the above?</h3>
Note that the area of the one 2-inch tiles is given as:
A1 = 4in²
The area of the quarter 8-inch tiles is:
A2 = 1/4 x 8 x 8
A2 = 16inch²
Divide both areas
A2/A1= 16/4
= 4
This implies she'll need four 2-inch tiles to cover the same amount of space as a quarter 8-inch tile.
Learn more about word problems:
brainly.com/question/13818690
#SPJ4
Full Question:
A homeowner is deciding on the size of tiles to use to fully tile a rectangular wall in her bathroom that is 80 inches by 40 inches. The tiles are squares and come in three side lengths: 8 inches, 4 inches, and 2 inches. State if you agree with each statement about the tiles. Explain your reasoning.
If she chooses the 8-inch tiles, she will need a quarter as many tiles as she would with 2-inch tiles,
The original number is 7 i think.
10(x^2) = 70x
10x^2 - 70x = 0
x^2 -7x =0
Δ= b^2 -4ac
where c doesnt exist=0
Δ= 49
-b ± √Δ /2a
7 ± √49 /2
7±7/2
x is either 14/2= 7
or 1/2, which doesnt work.
Lets see:
10(7^2) = 70•7
10•49 = 490
and that is right.
i hope my logic is correct.
Answer:
Perimeter is irrational
<em></em>
Step-by-step explanation:
<em>The attachment is missing but the question is still answerable</em>
Given

Required
Determine if the Perimeter is rational or not
First, we need to determine the sides of the square;

Substitute 


Take Square root of both sides


The perimeter of a square is calculated as:



<em>Because the value of </em><em>perimeter </em><em>can't be gotten by dividing two integers, then </em><em>perimeter is irrational</em>