Answer:
Fourth option
Explanation:
They're many different types of energy, from chemical and mechanical to heat and solar energy. But the two most basic types of energy are "kinetic and potential energy" or the fourth option. Kinetic energy is the energy an object has when it is in motion, while potential energy is the energy an object has when it's as rest. These two specific types of energies are the most basic and you can even convert them into many different types of energies, like heat or electrical energy.
Hope this helps.
Correct matching:
1 acceleration -->
rate of change in velocity, which is the change in velocity divided by the change in time
2. speed --> the rate at which an object changes position when traveling in a certain direction
4. gravity --> force of attraction between all masses in the universe
5. Inertia --> an object´s resistance to a change in motion
3. friction --> force of resistance acting between objects in contact and tending to dampen their motion
6. velocity --> the rate at which an object changes position
Answer:
Initial velocity describes how fast an object travels when gravity first applies force on the object. On the other hand, the final velocity is a vector quantity that measures the speed and direction of a moving body after it has reached its maximum acceleration.
Explanation:
Answer:
Explanation:
cSep 20, 2010
well, since player b is obviously inadequate at athletics, it shows that player b is a woman, and because of this, she would not be able to hit the ball. The magnitude of the initial velocity would therefore be zero.
Anonymous
Sep 20, 2010
First you need to solve for time by using
d=(1/2)(a)(t^2)+(vi)t
1m=(1/2)(9.8)t^2 vertical initial velocity is 0m/s
t=.45 sec
Then you find the horizontal distance traveled by using
v=d/t
1.3m/s=d/.54sec
d=.585m
Then you need to find the time of player B by using
d=(1/2)(a)(t^2)+(vi)t
1.8m=(1/2)(9.8)(t^2) vertical initial velocity is 0
t=.61 sec
Finally to find player Bs initial horizontal velocity you use the horizontal equation
v=d/t
v=.585m/.61 sec
so v=.959m/s
Answer:
2.63 cm
Explanation:
Hooke's law gives that the force F is equal to cy where c is spring constant and x is extension
Making c the subject of the formula then

Since F is gm but taking the given mass to be F

By substitution now considering F to be 3.3 kg
