Answer:
(a) The energy of the photon is 1.632 x
J.
(b) The wavelength of the photon is 1.2 x
m.
(c) The frequency of the photon is 2.47 x
Hz.
Explanation:
Let;
= -13.60 ev
= -3.40 ev
(a) Energy of the emitted photon can be determined as;
-
= -3.40 - (-13.60)
= -3.40 + 13.60
= 10.20 eV
= 10.20(1.6 x
)
-
= 1.632 x
Joules
The energy of the emitted photon is 10.20 eV (or 1.632 x
Joules).
(b) The wavelength, λ, can be determined as;
E = (hc)/ λ
where: E is the energy of the photon, h is the Planck's constant (6.6 x
Js), c is the speed of light (3 x
m/s) and λ is the wavelength.
10.20(1.6 x
) = (6.6 x
* 3 x
)/ λ
λ = 
= 1.213 x 
Wavelength of the photon is 1.2 x
m.
(c) The frequency can be determined by;
E = hf
where f is the frequency of the photon.
1.632 x
= 6.6 x
x f
f = 
= 2.47 x
Hz
Frequency of the emitted photon is 2.47 x
Hz.
Answer:
<em>The internal resistance of an ideal ammeter will be zero since it should allow current to pass through it. Voltmeter measures the potential difference, it is connected in parallel. .</em>
Explanation:
<h3>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em>!</em></h3>
Answer:
To find out the area of the hot filament of a light bulb, you would need to know the temperature, the power input, the Stefan-Boltzmann constant and <u>Emissivity of the Filament</u>.
Explanation:
The emissive power of a light bulb can be given by the following formula:
E = σεAT⁴
where,
E = Power Input or Emissive Power
σ = Stefan-Boltzmann constant
ε = Emissivity
A = Area
T = Absolute Temperature
Therefore,
A = E/σεT⁴
So, to find out the area of the hot filament of a light bulb, you would need to know the temperature, the power input, the Stefan-Boltzmann constant and <u>Emissivity of the Filament</u>.
Answer:
B
Explanation:
Newton’s Second Law of Motion
Newton’s Second Law of Motion states that ‘when an object is acted on by an outside force, the mass of the object equals the strength of the force times the resulting acceleration’.
This can be demonstrated dropping a rock or and tissue at the same time from a ladder. They fall at an equal rate—their acceleration is constant due to the force of gravity acting on them.
The rock's impact will be a much greater force when it hits the ground, because of its greater mass. If you drop the two objects into a dish of water, you can see how different the force of impact for each object was, based on the splash made in the water by each one.
Answer:
scatter plots show the relationship between the independent and dependent variables
Explanation:
A scatter plot is a graph which shows two variables plotted along two axes (usually the x and y axes). Scatter plots are useful in establishing any form of correlation between the dependent and independent variables in any study.
Correlation simply means the degree of relationship between variables, that is, how much does one variable affect the other? When scatter plots are almost a straight line graph, there is a high correlation between the variables. When the points in a scatter plot are isolated, there is little (sometimes zero) correlation between the variables.