Answer:
The charges under study are of the same sign
The calculation of the electric field for each charge separately, there is no relationship between the charges
Explanation:
Let's start by writing the equation for the electric field
E = k q / r²
where q is the charge under analysis and r the distance from this charge to a positive test charge.
When analyzing the statement the student has some problems.
* The charges under study are of the same sign, it does not matter if positive or negative.
* The calculation of the electric field for each charge separately, there is no relationship between the charges for the calculation of the electric field.
* What is added is the interaction of the electric field with the positive test charge, in this case each field has the opposite direction to the other, so the vector sum gives zero
Answer:
57908 N
Explanation:
Let's first convert Dumbo's mass into kg using the given relationship: 2.2 pounds =1 kg.
Then, 13000 lbs = 13000/2.2 kg = 5909 kg
Now, let's find the force of gravity on Dumbo at the surface of the earth, which would be in magnitude equal to the normal force that the Earth's surface applies on Dumbo.
F = m * a = 5909 kg * 9.8 m/s^2 = 57908 N
Answer:
4
Explanation:
In order for the current to continue flowing through the circuit (and for the bulbs to continue shining), there must be a closed path containing the battery where current can flow. Let's see the effect of removing each bulb on the circuit:
- 1: when removing bulb 1 only, the current can still flow through the path battery-bulb 3- bulb 4
- 2: when removing bulb 2 only, the current can still flow through the path battery-bulb 3- bulb 4
- 3: when removing bulb 3 only, the current can still flow through the path battery-bulb 1-bulb 2- bulb 4
- 4: when removing bulb 4 only, the current can no longer flow. In fact, there is no closed path that contains the battery now, so the current will not flow and all the bulbs will stop shining.
Answer:
Option B
Explanation:
<h3>According to Newton's third law, for every reaction there will be equal and opposite reaction</h3>
Here in this case the force of the club hitting the golf ball will be in one direction and the force acting on club due to golf ball will be in opposite direction and magnitude of this force will be same as the magnitude of the force of the club hitting the golf ball
In this case the action will be the force of the club hitting the golf ball and reaction will be the force acting on club due to golf ball
∴ The club pushes against to golf ball with a force equal and opposite to the force of the golf ball on the club