Equations of the vertical launch:
Vf = Vo - gt
y = yo + Vo*t - gt^2 / 2
Here yo = 35.0m
Vo is unknown
y final = 0
t = 4.00 s
and I will approximate g to 10m/s^2
=> 0 = 35.0 + Vo * 4 - 5 * (4.00)^2 => Vo = [-35 + 5*16] / 4 = - 45 / 4 = -11.25 m/s
The negative sign is due to the fact that the initial velocity is upwards and we assumed that the direction downwards was positive when used g = 10m/s^2.
Answer: 11.25 m/s
Answer:
884Hz
Explanation:
Beats is the absolute difference between two frequencies therefore
Beats = f1-f2
4=f1-880
F1=880+4
F1=884Hz
Probably because of the drag coefficient and the density of the liquid.
An object that's moving doesn't necessarily change its speed or acceleration. Also, the force applied to it doesn't need to change ... in fact, a moving object doesn't need ANY force applied to it in order to keep moving.
But any moving object WILL have a change in its position ... THAT's how you know it's moving, and that's WHY you say "It's moving !". (choice-B)
Answer:
If the frequency of the source is increased the current in the circuit will decrease.
Explanation:
The current through the circuit is given as;

Where;
V is the voltage in the AC circuit
Z is the impedance

Where;
R is the resistance
is the inductive reactance
= ωL = 2πfL
where;
L is the inductance
f is the frequency of the source
Finally, the current in the circuit is given as;

From the equation above, an increase in frequency (f) will cause a decrease in current (I).
Therefore, If the frequency of the source is increased the current in the circuit will decrease.