Answer:
The correct answer is:
An electron will be emitted in the second experiment, but it cannot be determined whether it will reach the second plate.
Explanation:
In fact, violet has higher frequency than green light. This means that photons on violet carry more energy than photons of green light (remember that the energy of a photon is proportional to it's frequency:

, so when they hit the surface of the metal, more energy is transferred to the electrons. The electron was already emitted with green light, so it must be emitted with also violet light, given the more energy transferred.
All photosynthesis eukaryotic cells contain chloroplast that use the radiant energy of sunlight to convert carbon dioxide and water into carbohydrates. As a byproduct of photosynthesis, oxygen gas is also released into the atmosphere through tiny openings in the leaves called stomata
Answer:
I would expect the gas rate determined in this manner to be too low
Explanation:
A Rotameter can be designed to respond to the sensitivity of density, velocity, to measure the flow rate of liquid or gas enclosed in a tube. Liquids are denser than gas, and since the gas rate to be determined needed to respond to the velocity head alone of the rotameter so as to bring the forces in the tube equilibrium. Knowing if there is no flow, then the float would remain at the bottom, so gas has to flow at a higher rate compared to the liquid so the float would be in a similar position making it easier to measure the flowrate. This leaves the gas rate to be determined too low.
1.) Na
2.) Cl ( at the second blank)
sodium metal+hydrochloric acid