Answer:
C. Lose three electrons to have a full outer shell
Explanation:
Al is in Group 13 of the Periodic Table, so it has three valence electrons.
It must either lose three electrons or gain five to achieve a stable octet.
It is easier to lose three electrons than it is to gain five, so Al loses three electrons.
D. is wrong, for the same reason.
A. is wrong. If Al lost three electrons, it would be breaking into a stable inner shell.
C. is wrong. Al is a metal, so it will lose electrons in a reaction.
Explanation:
When water is frozen then it is known as ice and its state is solid. So, its molecules will be held closer to each other as they are held by strong intermolecular forces of attraction.
As a result, its temperature will be minimum as its molecules have least kinetic energy.
It is known that kinetic energy of a substance is directly proportional to temperature.
As, K.E = 
where K.E = kinetic energy
T = temperature
k = boltzmann constant
When solid changes into liquid state then it means molecules of a substance has gained kinetic energy due to which there occurs more collisions between the molecules.
Hence, temperature of substance also increases.
Whereas when liquid state of a substance changes intro vapor state then it means that more kinetic energy has gained by the molecules due to which there will be much more collisions between the molecules.
Hence, temperature will be maximum in vapor state.
Answer:
See figure 1
Explanation:
If we want to find the acid and the Brønsted-Lowry base, we must remember the definition for each of these molecules:
-) Acid: hydrogen donor
-) Base: hydrogen acceptor
In the <u>caffeine structure,</u> we have several atoms of nitrogen. These nitrogen atoms have the ability to <u>accept</u> hydronium ions (
). Therefore the caffeine molecule will be the base since it can accept
If caffeine is the base, the water must be the acid. So, the water in this reaction donated a hydronium ion.
<u>Thus, caffeine is the base and water the acid. (See figure 1)</u>
Answer: This is from a wiki i found. Approximately one third of a cell’s proteins are destined to function outside the cell’s boundaries or while embedded within cellular membranes. Ensuring these proteins reach their diverse final destinations with temporal and spatial accuracy is essential for cellular physiology. In eukaryotes, a set of interconnected organelles form the secretory pathway, which encompasses the terrain that these proteins must navigate on their journey from their site of synthesis on the ribosome to their final destinations. Traffic of proteins within the secretory pathway is directed by cargo-bearing vesicles that transport proteins from one compartment to another. Key steps in vesicle-mediated trafficking include recruitment of specific cargo proteins, which must collect locally where a vesicle forms, and release of an appropriate cargo-containing vessel from the donor organelle (Figure 1). The newly formed vesicle can passively diffuse across the cytoplasm, or can catch a ride on the cytoskeleton to travel directionally. Once the vesicle arrives at its precise destination, the membrane of the carrier merges with the destination membrane to deliver its cargo. Have a nice day.
Explanation: Plz make brainliest
Answer:
Atoms bonds with 8 electrons
Explanation:
Octet rule is a chemical rule that shows elements in main group bond so that each atom have 8 valence electrons in the outmost shell which make them to have similar electronic configuration with Noble gases This is important because the sharing of electrons make atoms to have full shell. Atoms with electrons not up to 8 react with more stable compound.