Answer:
need more info so i can answer it
Explanation:
<h3>
Answer:</h3>
2100 g Fe₂(SO₄)₃
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<u>Atomic Structure</u>
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
5.26 mol Fe₂(SO₄)₃
<u>Step 2: Identify Conversions</u>
Molar Mass of Fe - 55.85 g/mol
Molar Mass of S - 32.07 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of Fe₂(SO₄)₃ - 2(55.85) + 3(32.07) + 12(16.00) = 399.91 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
2103.53 g Fe₂(SO₄)₃ ≈ 2100 g Fe₂(SO₄)₃
Non metals could be:
pencils
books
paper
metals could be:
pens
Tablet/Phone
Equation is as follow,
Fe₂O₃ + 3 CO → 2 Fe + 3 CO₂
Oxidation:
3 CO → 3 CO₂
Oxidation state of C in CO is +2, and that in CO₂ is +4. So, carbon has lost 2 electrons per mole and 6 electrons per 3 moles hence,
3 CO → 3 CO₂ + 6 e⁻
Reduction:
Fe₂O₃ → 2 Fe
Oxidation state of Fe in Fe₂O₃ is +3 per atom, and that in Fe is 0. So, Iron has gained 3 electrons per atom and 6 electrons per 2 atoms hence,
Fe₂O₃ + 6e⁻ → 2 Fe
Result:
Iron in Fe₂O₃ has been reduced in this reaction and has played a role of oxidizing agent by oxidizing carbon from +2 state to +4 state.