Answer:
a) The velocity of rock at 1 second, v = 9.8 m/s
b) The velocity of rock at 3 second, v = 29.4 m/s
c) The velocity of rock at 5.5 second, v = 53.9 m/s
Explanation:
Given data,
The rock is dropped from a bridge.
The initial velocity of the rock, u = 0
a) The velocity of rock at 1 second,
Using the first equation of motion
v = u + gt
v = 0 + 9.8 x 1
v = 9.8 m/s
b) The velocity of rock at 3 second,
v = u + gt
v = 0 + 9.8 x 3
v = 29.4 m/s
c) The velocity of rock at 5.5 second,
v = u + gt
v = 0 + 9.8 x 5.5
v = 53.9 m/s
<em>★</em><em> </em><em>«</em><em> </em><em><u>what is sound wave and examples</u></em><em><u> </u></em><em>»</em><em> </em><em>★</em>
- <em>A sound wave is the pattern of disturbance caused by the movement of energy traveling through a medium (such as air, water, or any other liquid or solid matter) as it propagates away from the source of the sound. The source is some object that causes a vibration, such as a ringing telephone, or a person's vocal chords.</em>
<em>hope </em><em>it</em><em> helps</em>
The correct is D.
Explanation: The specific heat is defined as heat required to raise the temperature of a unit mass by one degree. Greater the specific heat, more is the heat required to raise the temperature for equal mass. So, the temperature of the material with lowest specific heat will increase the most for the same amount of heat energy.
Answer:
(A) The mass and the initial temperature of the calorimeter water will be incorrect and affect the calculation of the specific heat capacity of the metal.