1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna [14]
3 years ago
5

An n- channel enhancement- mode MOSFET with 50 nm thick HfO2 high- k gate dielectric (Pr = 25) has a flat band voltage of 0.5 V,

and substrate doping of 1018 cm-3. The intrinsic carrier concentration is 1011 cm-3, effective electron channel mobility is 250 cm2/V­s, and Pr = 15. What is the drive current for a 50 om wide and 2 om long device at VG = 3 V and VD = 0.05 V? What is the saturation current at this gate bias?

Engineering
1 answer:
Alexeev081 [22]3 years ago
4 0

Answer:

Find the complete solution in the given attachments

You might be interested in
If the bolt head and the supporting bracket are made of the same material having a failure shear stress of 'Tra;i = 120 MPa, det
Nina [5.8K]

Answer:

P=361.91 KN

Explanation:

given data:

brackets and head of the screw are made of material with T_fail=120 Mpa

safety factor is F.S=2.5

maximum value of force P=??

<em>solution:</em>

to find the shear stress

                            T_allow=T_fail/F.S

                                         =120 Mpa/2.5

                                         =48 Mpa

we know that,

                               V=P

<u>Area for shear head:</u>

                              A(head)=π×d×t

                                           =π×0.04×0.075

                                           =0.003×πm^2

<u>Area for plate:</u>

                               A(plate)=π×d×t  

                                            =π×0.08×0.03

                                            =0.0024×πm^2

now we have to find shear stress for both head and plate

<u>For head:</u>

                                   T_allow=V/A(head)

                                    48 Mpa=P/0.003×π                 ..(V=P)

                                             P =48 Mpa×0.003×π

                                                =452.16 KN

<u>For plate:</u>

                                   T_allow=V/A(plate)

                                    48 Mpa=P/0.0024×π                 ..(V=P)

                                             P =48 Mpa×0.0024×π

                                                =361.91 KN

the boundary load is obtained as the minimum value of force P for all three cases. so the solution is

                                                P=361.91 KN

note:

find the attached pic

7 0
3 years ago
The current in a 20 mH inductor is known to be: 푖푖=40푚푚푚푚푡푡≤0푖푖=푚푚1푒푒−10,000푡푡+푚푚2푒푒−40,000푡푡푚푚푡푡≥0The voltage across the induct
Anni [7]

Answer:

a) The expression for electrical current: i = -0.134*e^(-10,000*t) + 0.174*e^(-40,000*t) A

The expression for voltage: v = 26.8*e^(-10,000*t) - 139.2*e^(-40,000*t) V

b) For t<=0 the inductor is storing energy and for t > 0 the inductor is delivering energy.

Explanation:

The question text is corrupted. I found the complete question on the web and it goes as follow:

The current in a 20 mH inductor is known to be: i = 40 mA at t<=0 and i = A1*e^(-10,000*t) + A2*e^(-40,000*t) A at t>0. The voltage across the inductor (passive sign convention) is -68 V at t = 0.

a. Find the numerical expressions for i and v for t>0.

b. Specify the time intervals when the inductor is storing energy and is delivering energy.

A inductor stores energy in the form of a magnetic field, it behaves in a way that oposes sudden changes in the electric current that flows through it, therefore at moment just after t = 0, that for convenience we'll call t = 0+, the current should be the same as t=0, so:

i = A1*e^(-10,000*(0)) + A2*e^(-40,000*(0))

40*10^(-3) = A1*e^(-10,000*0) + A2*e^(-40,000*0)

40*10^(-3) = (A1)*1 + (A2)*1

40*10^(-3) = A1 + A2

A1 + A2 = 40*10^(-3)

Since we have two variables (A1 and A2) we need another equation to be able to solve for both. For that reason we will use the voltage expression for a inductor, that is:

V = L*di/dt

We have the voltage drop across the inductor at t=0 and we know that the current at t=0 and the following moments after that should be equal, so we can use the current equation for t > 0 to find the derivative on that point, so:

di/dt = d(A1*e^(-10,000*t) + A2*e^(-40,000*t))/dt

di/dt = [d(-10,000*t)/dt]*A1*e^(-10,000*t) + [d(-40,000*t)/dt]*A2*e^(-40,000*t)

di/dt = -10,000*A1*e^(-10,000*t) -40,000*A2*e^(-40,000*t)

By applying t = 0 to this expression we have:

di/dt (at t = 0) = -10,000*A1*e^(-10,000*0) - 40,000*A2*e^(-40,000*0)

di/dt (at t = 0) = -10,000*A1*e^0 - 40,000*A2*e^0

di/dt (at t = 0) = -10,000*A1- 40,000*A2

We can now use the voltage equation for the inductor at t=0, that is:

v = L di/dt (at t=0)

68 = [20*10^(-3)]*(-10,000*A1 - 40,000*A2)

68 = -400*A1 -800*A2

-400*A1 - 800*A2 = 68

We now have a system with two equations and two variable, therefore we can solve it for both:

A1 + A2 = 40*10^(-3)

-400*A1 - 800*A2 = 68

Using the first equation we have:

A1 = 40*10^(-3) - A2

We can apply this to the second equation to solve for A2:

-400*[40*10^(-3) - A2] - 800*A2 = 68

-1.6 + 400*A2 - 800*A2 = 68

-1.6 -400*A2 = 68

-400*A2 = 68 + 1.6

A2 = 69.6/400 = 0.174

We use this value of A2 to calculate A1:

A1 = 40*10^(-3) - 0.174 = -0.134

Applying these values on the expression we have the equations for both the current and tension on the inductor:

i = -0.134*e^(-10,000*t) + 0.174*e^(-40,000*t) A

v = [20*10^(-3)]*[-10,000*(-0.134)*e^(-10,000*t) -40,000*(0.174)*e^(-40,000*t)]

v = [20*10^(-3)]*[1340*e^(-10,000*t) - 6960*e^(-40,000*t)]

v = 26.8*e^(-10,000*t) - 139.2*e^(-40,000*t) V

b) The question states that the current for the inductor at t > 0 is a exponential powered by negative numbers it is expected that its current will reach 0 at t = infinity. So, from t =0 to t = infinity the inductor is delivering energy. Since at time t = 0 the inductor already has a current flow of 40 mA and a voltage, we can assume it already had energy stored, therefore for t<0 it is storing energy.

8 0
3 years ago
Need help solving math problem using integration
notka56 [123]
Ummm did you try to add or subtract and multiply or divide that can get your answer
8 0
2 years ago
write down your own definition of Engineering, preferably in 4-5 sentences. Maximum of 150 words for your definition???.​
ollegr [7]

Answer:

A charge q1=7.0mc is located at the origin and a second charge q2=-5.0mc is located on the x axis, 0.3m the origin find the electric field at the point p which he's coordinates (0,0.40)m

4 0
3 years ago
Please define the coefficient of thermal expansion?
Vikki [24]

Answer:

The coefficient of thermal expansion tells us how much a material can expand due to heat.

Explanation:

Thermal expansion occurs when a material is subjected to heat and changes it's shape, area and volume as a result of that heat. How much that material changes is dependent on it's coefficient of thermal expansion.

Different materials have different coefficients of thermal expansion (i.e. It is a material property and differs from one material to the next). It is important to understand how materials behave when heated, especially for engineering applications when a change in dimension might pose a problem or risk (eg. building large structures).

7 0
2 years ago
Other questions:
  • Identify each statement as referring to a series or parallel circuit.
    15·1 answer
  • When choosing a respirator for your job, you must conduct a _____ test.
    15·1 answer
  • The human body gets its energy via the combustion of blood sugar (glucose). if all of the chemical bond energy in 10 g of glucos
    9·1 answer
  • The two boxcars A and B have a weight of 20000lb and 30000lb respectively. If they coast freely down the incline when the brakes
    11·1 answer
  • Steam enters a nozzle at 400°C and 800 kPa with a velocity of 10 m/s and leaves at 375°C and 400 kPa while losing heat at a rate
    7·1 answer
  • Determine the average power, complex power and power factor (including whether it is leading or lagging) for a load circuit whos
    9·2 answers
  • A fan draws air from the atmosphere through a 0.30-mdiameter round duct that has a smoothly rounded entrance. A differential man
    14·1 answer
  • Design drawings use line styles of up to eight different varieties to communicate important information about the item. true or
    7·1 answer
  • Might a synchronous motor equally well be called a synchronous inductor
    9·1 answer
  • Why not just put all the set up steps within each step? it is because we want to keep our code __ ? (3 letters)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!