1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shalnov [3]
3 years ago
7

Estimate the uncertainty in a 22 m/sec air velocity measurement using a Pitot tube at 20C. Assume the atmospheric pressure is 1

00 kPa and that R and the density of water, H O2  are known with high enough accuracy to consider them as constants (zero uncertainty). The pressure for each tap is measured with separate manometers that have a resolution of 0.5 mm. The manometers use water as the fluid and each are oriented vertically. The absolute pressure (which gives you the density of air) is known with an uncertainty of 0.1 kPa. The temperature is known with an uncertainty of 1C. Assume the stagnation pressure, pt, is indicated by a static height of 7 mm.

Engineering
1 answer:
ivanzaharov [21]3 years ago
4 0

Answer:

Check the explanation

Explanation:

In calculating the second version of velocity that is expected velocity, which involves the division of the overall amount of estimated story points by the amount of sprints. Take for instance, if the development team estimates a total of 150 points over five sprints, then we can say that the team's expected velocity would be 30 points per sprint.

Kindly check the attached image below to see the step by step explanation to the question above.

You might be interested in
A steel rod, which is free to move, has a length of 200 mm and a diameter of 20 mm at a temperature of 15oC. If the rod is heate
kherson [118]

Explanation:

thermal expansion ∝L = (δL/δT)÷L ----(1)

δL = L∝L + δT ----(2)

we have δL = 12.5x10⁻⁶

length l = 200mm

δT = 115°c - 15°c = 100°c

putting these values into equation 1, we have

δL = 200*12.5X10⁻⁶x100

= 0.25 MM

L₂ = L + δ L

= 200 + 0.25

L₂ = 200.25mm

12.5X10⁻⁶ *115-15 * 20

= 0.025

20 +0.025

D₂ = 20.025

as this rod undergoes free expansion at 115°c, the stress on this rod would be = 0

3 0
3 years ago
Who can help me with electric systems for cars?
hoa [83]

Answer: i can see if i can what is the problem

Explanation:

7 0
3 years ago
g A steel water pipe has an inner diameter of 12 in. and a wall thickness of 0.25 in. Determine the longitudinal and hoop stress
zvonat [6]

Answer:

a) \mathbf{\sigma _ 1 = 4800 psi}

     \mathbf{ \sigma _2 = 0}

b)\mathbf{\sigma _ 1 = 6000 psi}

  \mathbf{ \sigma _2 = 3000 psi}

Explanation:

Given that:

diameter d = 12 in

thickness t = 0.25 in

the radius = d/2 = 12 / 2 = 6 in

r/t = 6/0.25 = 24

24 > 10

Using the  thin wall cylinder formula;

The valve A is opened and the flowing water has a pressure P of 200 psi.

So;

\sigma_{hoop} = \sigma _ 1 = \frac{Pd}{2t}

\sigma_{long} = \sigma _2 = 0

\sigma _ 1 = \frac{Pd}{2t} \\ \\ \sigma _ 1 = \frac{200(12)}{2(0.25)}

\mathbf{\sigma _ 1 = 4800 psi}

b)The valve A is closed and the water pressure P is 250 psi.

where P = 250 psi

\sigma_{hoop} = \sigma _ 1 = \frac{Pd}{2t}

\sigma_{long} = \sigma _2 = \frac{Pd}{4t}

\sigma _ 1 = \frac{Pd}{2t} \\ \\ \sigma _ 1 = \frac{250*(12)}{2(0.25)}

\mathbf{\sigma _ 1 = 6000 psi}

\sigma _2 = \frac{Pd}{4t} \\ \\  \sigma _2 = \frac{250(12)}{4(0.25)}

\mathbf{ \sigma _2 = 3000 psi}

The free flow body diagram showing the state of stress on a volume element located on the wall at point B is attached in the diagram below

8 0
3 years ago
Write a program that prompts the user to enter time in 12-hour notation. The program then outputs the time in 24-hour notation.
Juliette [100K]

Answer:

THE CODE FOR THE PROGRAM IS GIVEN BELOW:

#include <iostream>

#include "ConvertTimeHeader.h"

using namespace std;

int main()

{

convertTime convert;

int hr, mn, sc = 0;

 

cout << "Please input hours in 12 hr notation: ";

cin >> hr;

cout << "Please input minutes: ";

cin >> mn;

cout << "Please input seconds: ";

cin >> sc;

 

convert.invalidHr(hr);

convert.invalidMin(mn);

convert.invalidSec(sc);

convert.printMilTime();

 

system("Pause");

 

return 0;  

 

}

#include <iostream>

#include "ConvertTimeHeader.h"

using namespace std;

int convertTime::invalidHr (int hour)

{

try{

 if (hour < 13 && hour > 0)

  {hour = hour + 12;

  return hour;}

 else{

 

  cin.clear();

  cin.ignore();

  cout << "Invalid input! Please input hour again in correct 12 hour format: ";

  cin >> hour;

  invalidHr(hour);

  throw 10;

 }

   

}

catch (int c) { cout << "Invalid hour input!";}

}

int convertTime::invalidMin (int min)

{

try{

 if (min < 60 && min > 0)

  {return min;}

 else{

 

  cin.clear();

  cin.ignore();

  cout << "Invalid input! Please input minutes again in correct 12 hour format: ";

  cin >> min;

  invalidMin(min);

  throw 20;

  return 0;

 }

   

}

catch (int e) { cout << "Invalid minute input!" << endl;}

}

int convertTime::invalidSec(int sec)

{

try{

 if (sec < 60 && sec > 0)

  {return sec;}

 else{

 

  cin.clear();

  cin.ignore();

  cout << "Invalid input! Please input seconds again in correct 12 hour format: ";

  cin >> sec;

  invalidSec(sec);

  throw 30;

  return 0;

 }

   

}

catch (int t) { cout << "Invalid second input!" << endl;}

}

void convertTime::printMilTime()

{

cout << "Your time converted: " << hour << ":" << min << ":" << sec;

}

Explanation:

4 0
3 years ago
I need ideas for what to build because I have some spare wood.
Misha Larkins [42]

Answer:

small guitar with no strings?

Explanation:

it would be fun to make i think

6 0
3 years ago
Other questions:
  • The net potential energy EN between two adjacent ions, is sometimes represented by the expression
    13·1 answer
  • The following C program asks the user for two input null-terminated strings, each stored in uninitialized 100-byte buffer, and c
    6·1 answer
  • Why are open systems harder to study than closed systems?​
    6·1 answer
  • Air (ideal gas) is contained in a cylinder/piston assembly at a pressure of 150 kPa and a temperature of 127°C. Assume that the
    12·1 answer
  • Give four effects of water hammer.​
    6·1 answer
  • Consider a metal single crystal oriented such that the normal to the slip plane and the slip direction are at angles of 43.1 deg
    6·1 answer
  • Which statement describes the relay between minerals and rocks ?
    15·1 answer
  • For heat transfer purposes, a standing man can be mod-eled as a 30-cm-diameter, 170-cm-long vertical cylinderwith both the top a
    11·1 answer
  • Problema sobre programacion orientada a objetos!!
    14·1 answer
  • Which option identifies the free resource Judi can use in the following scenario?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!