1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ket [755]
3 years ago
9

11–17 A long, thin-walled double-pipe heat exchanger with tube and shell diameters of 1.0 cm and 2.5 cm, respectively, is used t

o condense refrigerant-134a with water at 20°C. The refrigerant flows through the tube, with a convection heat transfer coefficient of hi = 4100 W/m2·K. Water flows through the shell at a rate of 0.3 kg/s. Determine the overall heat transfer coefficient of this heat exchanger.
Engineering
1 answer:
lana [24]3 years ago
5 0

Answer:

the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C

Explanation:

Given:

d₁ = diameter of the tube = 1 cm = 0.01 m

d₂ = diameter of the shell = 2.5 cm = 0.025 m

Refrigerant-134a

20°C is the temperature of water

h₁ = convection heat transfer coefficient = 4100 W/m² K

Water flows at a rate of 0.3 kg/s

Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?

First at all, you need to get the properties of water at 20°C in tables:

k = 0.598 W/m°C

v = 1.004x10⁻⁶m²/s

Pr = 7.01

ρ = 998 kg/m³

Now, you need to calculate the velocity of the water that flows through the shell:

v_{w} =\frac{m}{\rho \pi (\frac{d_{2}^{2}-d_{1}^{2}  }{4} )} =\frac{0.3}{998*\pi (\frac{0.025^{2}-0.01^{2}  }{4}) } =0.729m/s

It is necessary to get the Reynold's number:

Re=\frac{v_{w}(d_{2}-d_{1}) }{v} =\frac{0.729*(0.025-0.01)}{1.004x10^{-6} } =10891.4343

Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:

Nu=0.023Re^{0.8} Pr^{0.4} =0.023*(10891.4343)^{0.8} *(7.01)^{0.4} =85.0517

The overall heat transfer coefficient:

Q=\frac{1}{\frac{1}{h_{1} }+\frac{1}{h_{2} }  }

Here

h_{2} =\frac{kNu}{d_{2}-d_{1}} =\frac{0.598*85.0517}{0.025-0.01} =3390.7278W/m^{2}C

Substituting values:

Q=\frac{1}{\frac{1}{4100}+\frac{1}{3390.7278}  } =1855.8923W/m^{2} C

You might be interested in
Calculate the volume of a hydraulic accumulator capable of delivering 5 liters of oil between 180 and 80 bar, using as a preload
Vinil7 [7]

Answer:

1) V_o = 10 liters

2) V_o = 12.26 liters

Explanation:

For isothermal process n =1

V_o =\frac{\Delta V}{(\frac{p_o}{p_1})^{1/n} -(\frac{p_o}{p_2})^{1/n}}

V_o  = \frac{5}{[\frac{72}{80}]^{1/1} -[\frac{72}{180}]^{1/1}}

V_o = 10 liters

calculate pressure ratio to determine correction factor

\frac{p_2}{p_1} =\frac{180}{80} = 2.25

correction factor for calculate dpressure ration  for isothermal process is

c1 = 1.03

actual \ volume = c1\times 10 = 10.3 liters

b) for adiabatic process

n =1.4

volume of hydraulic accumulator is given as

V_o =\frac{\Delta V}{[\frac{p_o}{p_1}]^{1/n} -[\frac{p_o}{p_2}]^{1/n}}

V_o  = \frac{5}{[\frac{72}{80}]^{1/1.4} -[\frac{72}{180}]^{1/1.4}}

V_o = 12.26 liters

calculate pressure ratio to determine correction factor

\frac{p_2}{p_1} =\frac{180}{80} = 2.25

correction factor for calculate dpressure ration  for isothermal process is

c1 = 1.15

actual \volume = c1\times 10 = 11.5 liters

8 0
3 years ago
The "Big Dig" was the nickname of the civil engineering project that redesigned the highway Infrastructure for the city of
zheka24 [161]
Geotechnical since it’s geologicaly based
4 0
3 years ago
Two steel plates are to be held together by means of 16-mm-diameter high-strength steel bolts fitting snugly inside cylindrical
dusya [7]

Answer:

The outer diameter of the spacers that yields the most economical and safe design is 25.03 mm

Explanation:

For steel bolt

Stress = 210 MPa or 210 N/mm2

Pressure = Stress* Area

Pbolt = 210 N/mm2 * 16^2 *(pi)/4

Pbolt = 210 N/mm2 * 200.96 mm^2 = 42201.6  N

For Brass spacer

Pressure = 42201.6  N

Area of Brass spacer = Pressure/Stress

Area of Brass spacer = 42201.6  N/145 N/mm^2 = 291.044 mm^2

Area of Brass spacer = (pi) (d^2 - 16^2)/4 =  291.044 mm^2

d^2 - 16^2 = 291.044 mm^2* 4/(pi) = 370.758

d^2 =  370.758 + 16^2

d^2 =   626.758

d = 25.03 mm

The outer diameter of the spacers that yields the most economical and safe design is 25.03 mm

5 0
3 years ago
The value of Rth is *
Vladimir79 [104]
Johnjjjjjjhhhhhhhhjjjjjjjjjjj
4 0
2 years ago
Which one of the following questions about population growth is the only TRUE statement?A) The size of a population can never ex
tatyana61 [14]

Answer:

Explanation:

5

6 0
3 years ago
Other questions:
  • When the outside temperature is 5.2 ⁰C, a steel beam of cross-sectional area 52 cm2 is installed in a building with the ends of
    8·1 answer
  • g A pump is required to deliver 100 gpm at a head of 100 ft, but the pump rated capacity is 150 gpm at a head of 100 ft. If the
    9·1 answer
  • Write a C program that will update a bank balance. A user cannot withdraw an amount ofmoney that is more than the current balanc
    13·1 answer
  • 3. A particle is projected to the right from the position S = 0, when an initial velocity of 8 m/s. If the acceleration of the p
    6·1 answer
  • What did August Comte contribute to sociology including positivism
    11·1 answer
  • For a nozzle-duct system shown in Fig Q3, the nozzle is designed to produce a Mach number of 2.8 with y = 1.4, The inlet conditi
    14·1 answer
  • The Eads Bridge, which crosses the Mississippi River near St Louis, Missouri, was one of the first all steel bridges built in th
    8·1 answer
  • Problem definition
    11·1 answer
  • Which of the following sensors is used to provide suspension control module with feedback regarding vehicle cornering​ forces?
    8·1 answer
  • The first thing you should do is develop a ____________________ to determine what vehicle you can afford.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!