Answer:
V₂ = 12.43 L
Explanation:
Given data:
Initial pressure = 650 KPa
Initial volume = 2.2 L
Final pressure = 115 KPa
Final volume = ?
Solution:
The given problem will be solved through the Boyles law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
650 KPa ×2.2 L = 115 KPa × V₂
V₂ = 1430 KPa. L/ 115 KPa
V₂ = 12.43 L
A) The limiting reactant is Al
b) Br2 is the excess reactant
c) The amount moles of AlBr3 that get produced will be equal to the number of moles of Al to begin with.
d) 0
Answer:
6.319857 * 10 to the power 7
Liquids are the easiest state of matter to compress.
Answer:
1.208x10⁻³M and 392.5ppm La(NO3)3
Explanation:
The reaction that occurs is:
La2O3 + 6HNO3 → 2La(NO3)3 + 3H2O
Molarity is defined as the moles of solute (In this case, LaO3) per liter of solution. And ppm, are mg of solute per liter of solution.
To solve this question we must find the moles of La(NO3)3 produced and its mass in milligrams to find molarity and ppm:
<em>Moles La2O3 -Molar mass: 325.81g/mol-</em>
0.1968g * (1mol / 325.81g) = 6.04x10⁻⁴ moles La2O3
<em>Moles La(NO3)3:</em>
6.04x10⁻⁴ moles La2O3 * (2mol La(NO3)3 / 1mol La2O3) = 1.208x10⁻³ moles La(NO3)3
<em>Molarity:</em>
1.208x10⁻³ moles La(NO3)3 / 1L =
<h3>1.208x10⁻³M</h3>
<em>Mass La(NO3)3 -Molar mass: 324.92g/mol-</em>
1.208x10⁻³ moles La(NO3)3 * (324.92g / mol) = 0.392.5g La(NO3)3
In mg:
392.5mg La(NO3)3 / 1L =
392.5ppm La(NO3)3