Answer:
Explanation:
Molar heat capacity at constant volume Cv of a gas = n x .5 R where n is degree of freedom of the gas molecules
CO₂ is a linear molecule , so number of degree of freedom = 3 + 2 = 5
3 is translational and 2 is rotational degree of freedom . There is no vibrational degree of freedom given .
So Cv = 5 / 2 R
= 2.5 R .
Answer:
44.63g
Explanation:
First, let us calculate the number of mole of KBr in 1.50M KBr solution.
This is illustrated below:
Data obtained from the question include:
Volume of solution = 250mL = 250/1000 = 0.25L
Molarity of solution = 1.50M
Mole of solute (KBr) =.?
Molarity is simply mole of solute per unit litre of solution
Molarity = mole /Volume
Mole = Molarity x Volume
Mole of solute (KBr) = 1.50 x 0.25
Mole of solute (KBr) = 0.375 mole
Now, we calculate the mass of KBr needed to make the solution as follow:
Molar Mass of KBr = 39 + 80 = 119g/mol
Mole of KBr = 0.375 mole
Mass of KBr =?
Mass = number of mole x molar Mass
Mass of KBr = 0.375 x 119
Mass of KBr = 44.63g
Therefore, 44.63g of KBr is needed to make 250.0mL of 1.50 M potassium bromide (KBr) solution
They use natural resources like sunlight water they need soil water and sunlight to grow the stem should be pliable and firm and will have a green cast on the inside
6 inches of snowfall would be equivalent to 6/11 inches of water or 6/132 feet. So the volume of the equivalent amount of water on the roof is 150 ft. x 45 ft. x 6/132ft. = 306.8 cubic feet.
Since there are 907185 grams in a ton and 28316.8 mL in a cubic foot, 1.00 g/mL is equivalent to 0.0312 tons/cubic foot
Multiplying the two results gives 9.58 tons of snow.
Dependent variable. the independent is non dependent of the variable.