The half-life equation is written as:
An = Aoe^-kt
We use this equation for the solution. We do as follows:
5.5 = 176e^-k(165)
k = 0.02
<span>What is the half-life of the goo in minutes?
</span>
0.5 = e^-0.02t
t = 34.66 minutes <----HALF-LIFE
Find a formula for G(t) , the amount of goo remaining at time t.G(t)=?
G(t) = 176e^-0.02t
How many grams of goo will remain after 50 minutes?
G(t) = 176e^-0.02(50) = 64.75 g
It has to be 120g because each and every chemical equation has to satisfy the law of conservation of mass, ie sum of mass of products is always equal to the sum of masses of reactants. If reactants=120g, then products=120g
Suspensions
Explanation:
Suspensions are heterogeneous mixtures that contains large particles that can settle out or be filtered.
- Suspensions are mixtures of small insoluble particles of a solid in a liquid or gas.
- Examples are:
- powdered chalk in water
- muddy water
- harmattan
The particles in suspension can settle on standing
Learn more:
Suspension brainly.com/question/1557970
heterogeneous mixture brainly.com/question/1446244
#learnwithBrainly
The balanced equation for the acid base reaction is as follows
NaOH + HCl ---> NaCl + H₂O
stoichiometry of NaOH to HCl is 1:1
the number of NaOH moles reacted - 0.200 mol/L x 0.0250 L = 0.005 mol
according to molar ratio
number of NaOH moles reacted = number of HCl moles reacted
therefore number of HCl moles - 0.005 mol
volume of 30.0 mL contains 0.005 mol
therefore 1000 mL contains - 0.005 mol / 0.030 L = 0.167 M
concentration of HCl is 0.167 M
Answer:
Osmotic pressure is a measure of a solution's tendency to attract or take in water from another solution when the two solutions are separated by a semipermeable membrane
The order of increasing osmotic pressure is
- 0.7% KCl
- 1.5% KCl
- 1.8% KCl
- 5.0% KCl
- 8.6% KCl
Explanation:
Osmotic pressure is the strength of movement of the solvent of a solution through a semipermeable membrane separating solutions of different concentration thereby causing the solvent (such as water) to move from a region of high solute concentration to a region of lower solute concentration.
The amount of osmotic pressure through a semipermeable membrane separating solutions of different concentration is given by
π = i×M×R×T
π = osmotic pressure
i = van't Hoff's factor
(M) = molar concentration
(T) = temperature in kelvin
R = ideal gas constant (0.08206 L atm mol⁻¹K⁻¹)
As seen above , the osmotic pressure is directly proportional to the concentration of the solution thus in the order of increasing osmotic pressure we have
- 0.7% KCl
- 1.5% KCl
- 1.8% KCl
- 5.0% KCl
- 8.6% KCl