For Pascal's law, the pressure is transmitted with equal intensity to every part of the fluid:

which becomes

where

is the force on the first piston

is the area of the first piston

is the force on the second piston

is the area of the second piston
If we rearrange the equation and we use these data, we can find the intensity of the force on the second piston:
Answer:
h = 9.57 seconds
Explanation:
It is given that,
Initial speed of Kalea, u = 13.7 m/s
At maximum height, v = 0
Let t is the time taken by the ball to reach its maximum point. It cane be calculated as :




t = 1.39 s
Let h is the height reached by the ball above its release point. It can be calculated using second equation of motion as :

Here, a = -g


h = 9.57 meters
So, the height attained by the ball above its release point is 9.57 meters. Hence, this is the required solution.
Answer:
The change in gravitational potential energy of the climber-Earth system is 
Explanation:
From the question we are told that
The mass of the hiker is 
The time taken is 
The vertical elevation after time T is 
The change in gravitational potential is mathematically represented as

here g is the acceleration due to gravity with value
substituting values


C. Rotations per second
Or normally we'd use Radians Per second
_Brainliest if helped!!
Answer:
g = 1.25m/s²
Explanation:
Given the following data;
Mass = 5kg
Height = 6m
Gravitational potential energy = 24J
To find the acceleration due to gravity;
Potential energy can be defined as an energy possessed by an object or body due to its position.
Mathematically, potential energy is given by the formula;

Where,
P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
GPE = mgh
Substituting into the equation, we have;
24 = 5*6*g
24 = 30g
g = 30/24
g = 1.25m/s²
Therefore, the acceleration due to gravity on Planet X is 1.25m/s².