Answer:
B. Metallic bonds are stronger than hydrogen bonds but weaker than ionic bonds.
Explanation:
a p e x , just took the quiz
Answer:
a) t1 = v0/a0
b) t2 = v0/a0
c) v0^2/a0
Explanation:
A)
How much time does it take for the car to come to a full stop? Express your answer in terms of v0 and a0
Vf = 0
Vf = v0 - a0*t
0 = v0 - a0*t
a0*t = v0
t1 = v0/a0
B)
How much time does it take for the car to accelerate from the full stop to its original cruising speed? Express your answer in terms of v0 and a0.
at this point
U = 0
v0 = u + a0*t
v0 = 0 + a0*t
v0 = a0*t
t2 = v0/a0
C)
The train does not stop at the stoplight. How far behind the train is the car when the car reaches its original speed v0 again? Express the separation distance in terms of v0 and a0 . Your answer should be positive.
t1 = t2 = t
Distance covered by the train = v0 (2t) = 2v0t
and we know t = v0/a0
so distanced covered = 2v0 (v0/a0) = (2v0^2)/a0
now distance covered by car before coming to full stop
Vf2 = v0^2- 2a0s1
2a0s1 = v0^2
s1 = v0^2 / 2a0
After the full stop;
V0^2 = 2a0s2
s2 = v0^2/2a0
Snet = 2v0^2 /2a0 = v0^2/a0
Now the separation between train and car
= (2v0^2)/a0 - v0^2/a0
= v0^2/a0
The answer is C but man if you have leak or a meltdown good luck to anyone downstream.
Answer:
The magnitude of the electric field between the plates is half its initial value.
Explanation:
We know the electric field E = V/d where V = voltage applied and d = separation between plates.
Since V is constant and V = Ed,
So, E₁d₁ = E₂d₂ where E₁ = initial electric field at separation d₁, d₁ = initial separation of plates, E₂ = final electric field at separation d₂ and d₂ = final separation of plates.
So, E₂ = E₁d₁/d₂
Now, the distance between the plates is twice their original separation. Thus, d₂ = 2d₁
So, E₂ = E₁d₁/2d₁ = E₁/2
So, E₂ = E₁/2
Thus, the magnitude of the electric field between the plates is half its initial value.
Answer: distance d = 4.73e10m
Explanation: Suppose the charge on the black hole is 5740 C which is a positive charge.
Using electric potential V formula:
V = kq / d
Where K = 9.05×10^9Nm^2/C
And e = 1.6×10^-19C
But you don't need to substitute it.
1090 V = 8.99e9N·m²/C² * 5740C /d
Make d the subject of formula
d = 4.73e10 m