Answer:
10 molecules of NH₃.
Explanation:
N₂ + 3H₂ --> 2NH₃
As the N₂ supply is unlimited, what we need to do to solve this problem is <u>convert molecules of H₂ into molecules of NH₃</u>. To do so we use the <em>stoichiometric coefficients</em> of the balanced reaction:
- 15 molecules H₂ *
= 10 molecules NH₃
10 NH₃ molecules could be prepared from 15 molecules of H₂ and unlimited N₂.
Answer:
12
Explanation:
There are 4 sulfur atoms in SO4
4×3=12
This means that it turns into 3×(SO4)
=3SO4
Answer:
moles
Explanation:
The reaction equation is given as:
4NH₃ + 5O₂ → 4NO + 6H₂O
The number of moles of O₂ that completely reacted is given as 1 mole
To solve this problem, we are going to use a stoichiometric approach from the balanced reaction equation:
5 moles of O₂ will react completely to produce 4 moles of NO
1 mole of O₂ will therefore react to produce x mole of NO
5x = 4
x =
moles of NO
The expression for the Ka for the given acid is:
Ka = [H2P2O7^2-] [H3O+] /[H3P2O7^2-]
<span>Ka is the acid dissociation constant or the acidity constant. It is a measure of the acid strength when in solution. It is an equilibrium constant for the dissociation of the acid.</span>