Ok to answer this question we firsst need to fin the number of mol of Urea (CH4N2O). to do this we simply :
1 mol of urea =15/60.055 = 0.25mol
therefore 200g of water contain 0.25mol
the next step is to determine the malality of our solution in 200g of water, to do this we say:
200 g = 1Kg/1000g = 0.2kg
therefor 0.25mol/0.2Kg = 1.25mol/kg
and from the equation:
we know that i = 1
we are given Kf
b is the molality that we just calculated
therefore;
the solutions freezing point is -2.325°C
Given:3.40g sample of the steel used to produce 250.0 mLSolution containing Cr2O72−
Assuming all the Cr is contained in the BaCrO4 at the end.
(0.145 g BaCrO4) / (253.3216 g BaCrO4/mol) x (250.0 mL / 10.0 mL) x (1 mol Cr / 1 mol BaCrO4) x (51.99616 g Cr/mol / (3.40 g) = 0.219 = 21.9% Cr
Answer:
a resource that cannot be replenished in a short period of time.
Explanation:
Nonrenewable energy sources take thousands to millions of years to replenish. hence the "nonrenewable".
In cell biology, the cytoplasm is the material or protoplasm within a living cell, excluding the cell nucleus. It comprises cytosol (the gel-like substance enclosed within the cell membrane) and the organelles – the cell's internal sub-structures. All of the contents of the cells of prokaryote organisms (such as bacteria, which lack a cell nucleus) are contained within the cytoplasm. Within the cells of eukaryote organisms the contents of the cell nucleus are separated from the cytoplasm, and are then called thenucleoplasm. The cytoplasm is about 80% water and usually colorless.[1]
It is within the cytoplasm that most cellular activities occur, such as many metabolic pathways including glycolysis, and processes such as cell division. The concentrated inner area is called the endoplasm and the outer layer is called the cell cortex or theectoplasm.
Movement of calcium ions in and out of the cytoplasm is a signaling activity for metabolic processes.[2]
In plants, movement of the cytoplasm around vacuoles is known as cytoplasmic streaming.