I’d say 4 because running a mile in 6 minutes is better than what most people can do and that will really make your heart rate go up
Answer:
a) h'= 5/7 h
, b) h ’= h
Explanation:
Let's use energy conservation for this exercise
Starting point. Upper left side
Em₀ = mg h
Final point. Lower left side
Emf = K = ½ m v² + ½ I w²
Em₀ = emf
mgh = ½ m v² + ½ I w²
Angular and linear velocity are related
v = r w
w = v / r
The moment of inertia of the marble that we take as a solid sphere is
I = 2/5 m r²
We substitute
m g h = ½ m v² + ½ 2/5 m r² (v / r)²
g h = ½ v2 (1 + 2/5)
v = √(g h 10/7)
This is the speed at the bottom of the bowl
Now let's apply energy conservation to the right side
a) right side if rubbing
Em₀ = K
Emf = U = mg h’
½ m v² = mg h’
h’= ½ (g h 10/7) / g
h'= 5/7 h
b) right side with rubbing
Em₀ = K
Emf = K + U = -½ I w² + m g h
Emf = -½ 2/5 m r² v² / r² + m gh
Em₀ = emf
½ v² = -1/5 v² + g h’
h’= (1/2 +1/5) (gh 10/7) / g
h ’= h
c) When there is friction, an energy of rotation is accumulated that must be dissipated, by local it goes higher
C is a non-metal and so is O. So the answer is CO
Answer: a=-2.4525 m/s^2
d=s=190.3 m
Explanation:The only force that is stopping the car and causing deceleration is the frictional force Fr
Fr = 25% of weight
W=mg
W=1750*9.81
W=17167.5
Hence

Frictional force is negative as it acts in opposite direction
According to newton second law of motion
F=ma
hence


given
u= 110 km/h
u=110*1000/3600
u=30.55 m/s
to get t we know that final velocity v=0
