Answer:
121 Joules
6.16717 m
Explanation:
m = Mass of the rocket = 2 kg
k = Spring constant = 800 N/m
x = Compression of spring = 0.55 m
Here, the kinetic energy of the spring and rocket will balance each other

The initial velocity of the rocket is 11 m/s = u.
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s² = g

The maximum height of the rocket will be 6.16717 m
Potential energy is given by

The potential energy of the rocket at the maximum height will be 121 Joules
Answer:
Yes it is balanced
Explanation:
Because 10-10= a net force of 0N
Its equal (balanced)
We have the following equation for height:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
Where,
a: acceleration
vo: initial speed
h0: initial height.
The value of the acceleration is:
a = -g = -9.8 m / s ^ 2
For t = 0 we have:
h (0) = (1/2) * (a) * 0 ^ 2 + vo * 0 + h0
h (0) = h0
h0 = 0 (reference system equal to zero when the ball is hit).
For t = 5.8 we have:
h (5.8) = (1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0
(1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0 = 0
vo = (1/2) * (9.8) * (5.8)
vo = 28.42
Substituting values we have:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
h (t) = (1/2) * (- 9.8) * t ^ 2 + 28.42 * t + 0
Rewriting:
h (t) = -4.9 * t ^ 2 + 28.42 * t
The maximum height occurs when:
h '(t) = -9.8 * t + 28.42
-9.8 * t + 28.42 = 0
t = 28.42 / 9.8
t = 2.9 seconds.
Answer:
The ball was at maximum elevation when:
t = 2.9 seconds.
Answer: Thermal Energy is energy resulting from the motion of particles; It is a form of kinetic energy and is transferred as heat; Thermal Energy Transfer can occur by three methods: Conduction; Convection; Radiation; Conduction. Conduction is the transfer of thermal energy through direct contact between . particles of a substance.
Explanation:
I think the correct answer from the choices listed above is the second option. The relationship between the direction of energy and wave motion in a transverse wave would be the <span>energy direction is perpendicular to the motion of the wave. Hope this answers the question. Have a nice day.</span>