Answer:
r = 0.02 m
Explanation:
from the question we have :
speed = 1 rps = 1x 60 = 60 rpm
coefficient of friction (μ) = 0.1
acceleration due to gravity (g) = 9.8 m/s^{2}
maximum distance without falling off (r) = ?
to get how far from the center of the disk the coin can be placed without having to slip off we equate the formula for the centrifugal force with the frictional force on the turntable force
mv^2 / r = m x g x μ
v^2 / r = g x μ .......equation 1
where
velocity (v) = angular speed (rads/seconds) x radius
angular speed (rads/seconds) = (\frac{2π}{60} ) x rpm
angular speed (rads/seconds) = (\frac{2 x π}{60} ) x 60 = 6.28 rads/ seconds
now
velocity = 6.28 x r = 6.28 r
now substituting the value of velocity into equation 1
v^2 / r = g x μ
(6.28r)^2 / r = 9.8 x 0.1
39.5 x r = 0.98
r = 0.02 m
The leaf fell at the crooked path instead of straight down because air currents and gravity applied changing and unbalanced forces to the leaf.
<h3>What is an air current?</h3>
An air current is defined as the changes in atmospheric pressure that causes the movement of air from one area to another.
When a leaf is detached naturally from the tree, it won't fall straight down to the floor but will fall a distance away from the tree due to the action of air current and some unbalanced forces.
Learn more about leaf here:
brainly.com/question/24234175
#SPJ1
The correct answer to the question above is that the magician is seeking the wavelength of the standing wave. The part of a standing sound wave, which is its wavelength, the magician is seeking when playing a musical note of a specific pitch.