The Lithium-ion Battery Problem
Overheating. They overheat and explode if charged too fast.
Short life time. They die after less than 1,000 charge/discharge cycles.
Flammable. They use chemicals that are flammable. ...
Toxic. ...
Underperform in extreme temperatures. ...
Expensive casing. ...
Expensive to transport.
Answer:
Theoretical yield of C6H10 = 3.2 g.
Explanation:
Defining Theoretical yield as the quantity of product obtained from the complete conversion of the limiting reactant in a chemical reaction. It can be expressed as grams or moles.
Equation of the reaction
C6H11OH --> C6H10 + H2O
Moles of C6H11OH:
Molar mass of C6H110H = (12*6) + (1*12) + 16
= 100 g/mol
Mass of C6H10 = 3.8 g
number of moles = mass/molar mass
=3.8/100
= 0.038 mol.
Using stoichoimetry, 1 moles of C6H110H was dehydrated to form 1 mole of C6H10 and 1 mole of water.
Therefore, 0.038 moles of C6H10 was produced.
Mass of C6H10 = molar mass * number of moles
Molar mass of C6H10 = (12*6) + (1*10)
= 82 g/mol.
Mass = 82 * 0.038
= 3.116 g of C6H10.
Theoretical yield of C6H10 = 3.2 g
<u> C^1H^1C^1I^1</u>
Explanation:
<u>this seems already balanced</u>
C = 1
H =1
C = 1
I = 1
There would be no more earthquakes or volcanic eruptions as the earth's plate are the cause of both these occurrences.(which can be seen as a positive)
However, the plates allow the earth to cool when they move because they cause heat loss.If the plates were to stop moving the earth would have to loose heat another way and since we cant tell how this would happen, it could be very dangerous.
Answer:
The atomic number of the sodium atom is 11. The atomic mass number can be estimated by rounding the atomic mass to 23.
Explanation:
The atomic number of the sodium atom is 11. The atomic mass number can be estimated by rounding the atomic mass to 23.