Answer:
Lose two electrons.
Explanation:
Barium is present in group 2.
It is alkaline earth metal.
Its atomic number is 56.
Its electronic configuration is Ba₅₆ = [Xe] 6s².
In order to attain the noble gas electronic configuration it must loses its two valance electrons.
When barium loses it two electron its electronic configuration will equal to the Xenon.
The atomic number of xenon is 54 so barium must loses two electrons to becomes equal to the xenon.
Answer:
0.0063 mol
Explanation:
Step 1: Write the balanced combustion equation
C₈H₁₈(l) + 12.5 O₂(g) ⇒ 8 CO₂(g) + 9 H₂O(g)
Step 2: Establish the appropriate molar ratio
According to the balanced equation, the molar ratio of C₈H₁₈ to CO₂ is 1:8.
Step 3: Calculate the number of moles of C₈H₁₈ needed to produce 0.050 moles of CO₂
0.050 mol CO₂ × 1 mol C₈H₁₈/8 mol CO₂ = 0.0063 mol C₈H₁₈
Answer:
Cedar, mahogany, red wood or something else is fine, but the only downside is that it will cost you more. However, a project that is partially or fully exposed to the elements, something more than normal lumber is a must. The most cost effective method is to use pressure treated lumber.
Explanation:
4C₃H₅(NO₃)₃
------> 12CO₂
+ 6N₂
+ 10H₂O
+ O₂
mol of CO₂ = 
= 
mol ratio of CO₂ : C₃H₅(NO₃)₃
12 : 4
∴ if mole of CO₂ = 0.568 mol
then " " C₃H₅(NO₃)₃ = 
= 0.189 mol
∴ mass of nitroglycerin = mole * Mr
= 0.189 mol * 227.0995 g / mol
= 43.00 g
Osmotic pressure is the pressure that would have to be applied to a pure solvent to prevent it from passing into a given solution by osmosis.
That can be mathematical computed from the expression:
Osmotic pressure=C×R×T
Where,
C= Concentration
R=Gas constant
T=Temperature
Concentration=Number of moles of solute/Volume(L)
=0.005*1000/100
=0.05
R= 0.08206 atm L/mol K
T=25+273
=298
Osmotic pressure= 0.05×0.08206×298
=1.2 atm