Answer:
See explanation
Explanation:
Tyndall effect refers to the scattering of light in a solution. Tyndall effect occurs when the size of particles in the solution exceeds 1 nm in diameter. Such solutions are actually called false solutions.
In tincture of iodine, the size of particles in solution is less than 1 nm in diameter hence the solution does not exhibit Tyndall effect. Hence, tincture of iodine is a true solution.
Therefore, if the size of particles in solution exceeded 1nm in diameter, Tyndall effect is observed.
The grams of oxygen that are produced is 228.8 grams
<em>calculation</em>
2H₂O₂ → 2H₂O +O₂
Step 1: use the mole ratio to determine the moles of O₂
from equation above H₂O₂:O₂ is 2:1
therefore the moles of O₂ = 14.3 moles ×1/2 = 7.15 moles
Step 2: find mass of O₂
mass = moles × molar mass
= 7.15 moles × 32 g/mol =228.8 g
Answer:
6.22 × 10⁻⁵
Explanation:
Step 1: Write the dissociation reaction
HC₆H₅COO ⇄ C₆H₅COO⁻ + H⁺
Step 2: Calculate the concentration of H⁺
The pH of the solution is 2.78.
pH = -log [H⁺]
[H⁺] = antilog -pH = antilog -2.78 = 1.66 × 10⁻³ M
Step 3: Calculate the molar concentration of the benzoic acid
We will use the following expression.
Ca = mass HC₆H₅COO/molar mass HC₆H₅COO × liters of solution
Ca = 0.541 g/(122.12 g/mol) × 0.100 L = 0.0443 M
Step 4: Calculate the acid dissociation constant (Ka) for benzoic acid
We will use the following expression.
Ka = [H⁺]²/Ca
Ka = (1.66 × 10⁻³)²/0.0443 = 6.22 × 10⁻⁵
<span>The test dummy will continue forward until it makes contact with another object.</span>