Explanation:
Molar mass
The mass present in one mole of a specific species .
The molar mass of a compound , can easily be calculated as the sum of the all the individual atom multiplied by the number of total atoms .
(a) S₈
Molar mass of of the atoms are -
sulfur, S = 32 g/mol.
Molar mass of S₈ = 8 * 32 g/mol. = 256 g/mol.
(b) C₂H₁₂
Molar mass of of the atoms are -
Hydrogen , H = 1 g/mol
Carbon , C = 12 g/mol
Molar mass of C₂H₁₂ = ( 2 * 12 ) + (12 * 1 ) = 36 g /mol
(c) Sc₂(SO₄)₃
Molar mass of of the atoms are -
sulfur, S = 32 g/mol.
oxygen , O = 16 g/mol.
scandium , Sc = 45 g/mol.
Molar mass of Sc₂(SO₄)₃ = (2 * 45 ) + ( 3 *32 ) + ( 12 * 16 ) = 378 g /mol
(d) CH₃COCH₃ (acetone)
Molar mass of of the atoms are -
Carbon , C = 12 g/mol
oxygen , O = 16 g/mol.
Hydrogen , H = 1 g/mol
Molar mass of CH₃COCH₃ (acetone) = (3 * 12 ) + ( 1 * 16 ) + ( 6 * 1 ) = 58g/mol
(e) C₆H₁₂O₆ (glucose)
Molar mass of of the atoms are -
Carbon , C = 12 g/mol
oxygen , O = 16 g/mol.
Hydrogen , H = 1 g/mol
Molar mass of C₆H₁₂O₆ (glucose) = ( 6 * 12 ) + ( 12 * 1 ) + ( 6 * 16 ) = 108g/mol.
Answer:
D i think, sorry if its wrong
Explanation:
Answer:
- Alanine = 5.61 mmoles
- Leucine = 3.81 mmoles
- Tryptophan = 2.45 mmoles
- Cysteine = 4.13 mmoles
- Glutamic acid = 3.40 mmoles
Explanation:
Mass / Molar mass = Moles
Milimoles = Mol . 1000
500 mg / 1000 = 0.5 g
- Alanine = 0.5 g / 89 g/m → 5.61x10⁻³ moles . 1000 = 5.61mmoles
- Leucine = 0.5 g / 131 g/m → 3.81 x10⁻³ moles . 1000 = 3.81 mmoles
- Tryptophan = 0.5 g / 204 g/m → 2.45x10⁻³ moles . 1000 = 2.45 mmoles
- Cysteine = 0.5 g / 121 g/m → 4.13x10⁻³ moles . 1000 = 4.13 mmoles
- Glutamic acid = 0.5 g 147 g/m → 3.40x10⁻³ moles . 1000 = 3.4 mmoles
Answer:
Hyponym is the another name for hard water.
Explanation:
Please Mark me brainliest
Water moved through the water cycle by changing its state. Think, for example, of water evaporating (liquid to gas), snow sublimating (solid to gas) or melting (solid to liquid), rain (gas to liquid), sleet (liquid to solid), or snow (gas to solid).
The answer would thus be A.