Answer:
One: Median = 2
Two: Mean = 3.25
Step-by-step explanation:
One
Put the dots in order
1 1 1 2 2 3 3
There are seven groups altogether.
The middle one is a 2.
The median is 2.
Two
The mean is the average.
The average of the 4 groups is
1 3 6 3 = 13
The average is the sum of the dots.
13/4 = 3.25
Answer:
Los números decimales son una combinación de números enteros y números que se encuentran entre los números enteros. A veces es importante poder comparar decimales para saber cuál es mayor. Por ejemplo, si alguien corrió los 100 metros planos en 10.57 segundos, y alguien más los corrió en 10.67 segundos, puedes comparar los decimales para determinar qué tiempo es más rápido. Saber cómo comparar decimales requiere el entendimiento del valor de posición decimal, y es similar a comprar números enteros.
Cuando trabajamos con decimales, hay veces que no se necesita un número preciso. En tal caso, es útil redondear números decimales. Por ejemplo, si la bomba de una gasolinera muestra que llenaste el tanque del carro de un amigo con 16.478 galones de gasolina, podrías querer redondear el número y decirle a tu amigo que le pusiste 16.5 galones.
Step-by-step explanation:
Otra forma de comparar decimales es comparar los dígitos en cada número, empezando con el lugar de posición mayor, que es el de la izquierda. Cuando un dígito en un número decimal es mayor que el dígito correspondiente en el otro número, entonces ése número decimal es mayor.
Por ejemplo, primero compara los dígitos de las décimas. Si son iguales, continúa con el lugar de las centésimas. Si esos dígitos no son iguales, el decimal con el dígito mayor es el número decimal mayor. Observa cómo se hace esto en los ejemplos siguientes.
Answer:
12
Step-by-step explanation:
This can be solved by working backwards.
7 is one more than half the number of invitations.
Subtract 1. 6 is half the number of invitations.
Double.
12 is the full number of invitations.
Algebra (if you must!):
x = number of invitations
x/2 + 1 = 7
Subtract 1.
x/2 = 6
Multiply by 2.
x = 12
Given
- f(n) values for n=1,2,3,4
- possible candidates for the function
Solution:
Method: Evaluate some of the values, for each function. A function with ANY value not matching the given f(n) values will be rejected.
N=1, f(n)=4
f(1)=4-3(1-1)=4
f(1)=4+3^(1+1)=4+3^2=4+9=13 ≠ 4 [rejected]
f(1)=4(3^(n-1))=4(3^0)=4
f(1)=3(4^(n-1))=3(4^0)=3*1=3 [rejected]
N=2, f(n)=12
f(1)=4-3(2-1)=4-3(1)=1 ≠ 12 [rejected]
[rejected]
f(1)=4(3^(2-1)=4*3^1=4*3=12
[rejected]
Will need to check one more to be sure
N=3, f(n)=3
[rejected]
[rejected]
f(3)=4(3^(n-1))=4(3^(3-1))=4(3^2)=4*9=36 [Good]
[rejected]
Solution: f(n)=4(3^(n-1))