The answer is B 38 for g.h and 5
Answer: Choice D. y = (x-1)^2 - 3
The vertex is (h,k) = (1,-3). So h = 1 and k = -3.
We have a = 1 as the leading coefficient.
Plug those values into the equation below
y = a(x-h)^2 + k
y = 1(x - 1)^2 + (-3)
y = (x - 1)^2 - 3
Answer:
8(3x-5)
8 is the GCF of 24 and 40 so you write 8 and in brackets you put your terms after you divide by 8 so you get 3x and -5 so it is written as 8(3x-5)
We have been given two points.
and
. We are asked to find the point B such that it divides line segment AC so that the ratio of AB to BC is 4:1.
We will use segment formula to solve our given problem.
When a point P divides segment any segment internally in the ratio
, then coordinates of point P are:
![[\right x=\frac{mx_2+nx_1}{m+n},y=\frac{my_2+ny_1}{m+n}\left]](https://tex.z-dn.net/?f=%5B%5Cright%20x%3D%5Cfrac%7Bmx_2%2Bnx_1%7D%7Bm%2Bn%7D%2Cy%3D%5Cfrac%7Bmy_2%2Bny_1%7D%7Bm%2Bn%7D%5Cleft%5D)
and
.

Upon substituting our given information in above formula, we will get:
![[\right x=\frac{4(3)+1(3)}{4+1},y=\frac{4(9)+1(4)}{4+1}\left]](https://tex.z-dn.net/?f=%5B%5Cright%20x%3D%5Cfrac%7B4%283%29%2B1%283%29%7D%7B4%2B1%7D%2Cy%3D%5Cfrac%7B4%289%29%2B1%284%29%7D%7B4%2B1%7D%5Cleft%5D)
![[\right x=\frac{12+3}{5},y=\frac{36+4}{5}\left]](https://tex.z-dn.net/?f=%5B%5Cright%20x%3D%5Cfrac%7B12%2B3%7D%7B5%7D%2Cy%3D%5Cfrac%7B36%2B4%7D%7B5%7D%5Cleft%5D)
![[\right x=\frac{15}{5},y=\frac{40}{5}\left]](https://tex.z-dn.net/?f=%5B%5Cright%20x%3D%5Cfrac%7B15%7D%7B5%7D%2Cy%3D%5Cfrac%7B40%7D%7B5%7D%5Cleft%5D)
![[\right x=3,y=8\left]](https://tex.z-dn.net/?f=%5B%5Cright%20x%3D3%2Cy%3D8%5Cleft%5D)
Therefore, the coordinates of point B would be
.
This one isn’t really that hard. the answer is 24.