Answer:
A force is a push or pull upon an object resulting from the object's interaction with another object. Whenever there is an interaction between two objects, there is a force upon each of the objects. ... Forces only exist as a result of an interaction.
I think is True! Is the best answer. Because the trumpet it make them sounds like the lips with the musician and it vibrate.
It is determined by the nature of the green light. Because lasers create light at almost a single frequency, green laser light would appear as a thin line of pure green. Other sources of "green" light emit light at a variety of frequencies, including yellow and blue, resulting in a strong green band in the center that fades into blue-green and yellow-green at the borders.
For example, here’s a graph of the spectrum of a green LED, showing the color range: Attachment #1
and here’s a graph of the transmission spectra of several standard photographic filters, including green: Attachment #2
Learn more about the color spectrum:
#SPJ2
Answer:
(a) 2.85 m
(b) 16.5 m
(c) 21.7 m
(d) 22.7 m
Explanation:
Given:
v₀ₓ = 19 cos 71° m/s
v₀ᵧ = 19 sin 71° m/s
aₓ = 0 m/s²
aᵧ = -9.8 m/s²
(a) Find Δy when t = 3.5 s.
Δy = v₀ᵧ t + ½ aᵧ t²
Δy = (19 sin 71° m/s) (3.5 s) + ½ (-9.8 m/s²) (3.5 s)²
Δy = 2.85 m
(b) Find Δy when vᵧ = 0 m/s.
vᵧ² = v₀ᵧ² + 2 aᵧ Δy
(0 m/s)² = (19 sin 71° m/s)² + 2 (-9.8 m/s²) Δy
Δy = 16.5 m
(c) Find Δx when t = 3.5 s.
Δx = v₀ₓ t + ½ aₓ t²
Δx = (19 cos 71° m/s) (3.5 s) + ½ (0 m/s²) (3.5 s)²
Δx = 21.7 m
(d) Find Δx when Δy = 0 m.
First, find t when Δy = 0 m.
Δy = v₀ᵧ t + ½ aᵧ t²
(0 m) = (19 sin 71° m/s) t + ½ (-9.8 m/s²) t²
0 = t (18.0 − 4.9 t)
t = 3.67
Next, find Δx when t = 3.67 s.
Δx = v₀ₓ t + ½ aₓ t²
Δx = (19 cos 71° m/s) (3.67 s) + ½ (0 m/s²) (3.67 s)²
Δx = 22.7 m