Answer:

Explanation:
Hello.
In this case, since the velocity is computed via the division of the distance traveled by the elapsed time:

The distance is clearly 1743 km and the time is:

Thus, the velocity turns out:

Which is a typical velocity for a plane to allow it be stable when flying.
Best regards.
Answer:
- 1100 J heat flows out
Explanation:
dW = - 1600 J (as work is done on the gas)
dU = 500 J
dQ = ?
According to the first law of thermodynamics
dQ = dU + dW
dQ = 500 - 1600
dQ = - 1100 J
As heat is negative so it flows out.
Hmm this is difficult you need to go to answers.con and it come out cya :D
I think we will use the law of conservation of linear momentum;
M1V1 = M2V2
M1 = 4 kg (mass of the water balloon launcher)
V1=?
M2= 0.5 kg ( mass of the balloon)
V2 = 3 m/s
Therefore; 4 V1 = 0.5 × 3
4V1= 1.5
V1= 1.5/4
= 0.375 m/s
The heat remains constant because there’s nothing to cool it down