Chemical properties are mainly determined by the number of valence electrons (electrons which can be gained, lost, or shared) in the atom.
At 218 °C, solid NH₄SH decomposes to form 0.011 M NH₃ and H₂S, as given by its equilibrium constant.
<h3>What is the equilibrium constant?</h3>
The equilibrium constant (Keq) is the ratio of the product of the concentrations of the products to the product of the concentrations of the reactants, all raised to their stoichiometric coefficients.
Only gases and aqueous species are included.
- Step 1. Make an ICE chart.
NH₄SH(s) ⇋ NH₃(g) + H₂S(g)
I 0 0
C +x +x
E x x
- Step 2. Write the equilibrium constant.
Keq = 1.2 × 10⁻⁴ = [NH₃] [H₂S] = x²
x = 0.011 M
At 218 °C, solid NH₄SH decomposes to form 0.011 M NH₃ and H₂S, as given by its equilibrium constant.
Learn more about equilibrium here: brainly.com/question/5081082
#SPJ1
Answer:
<em><u>PLZ</u></em><em><u> </u></em><em><u>MARK</u></em><em><u> </u></em><em><u>ME</u></em><em><u> </u></em><em><u>BRIANLIEST</u></em><em><u> </u></em><em><u>I</u></em><em><u> </u></em><em><u>REALLY</u></em><em><u> </u></em><em><u>WANT</u></em><em><u> </u></em><em><u>IT</u></em><em><u> </u></em><em><u>PLZZZZZZ</u></em><em><u> </u></em><em><u>ISS</u></em><em><u> </u></em><em><u>GARIB</u></em><em><u> </u></em><em><u>KI</u></em><em><u> </u></em><em><u>DUA</u></em><em><u> </u></em><em><u>LAGEGI</u></em><em><u> </u></em><em><u>YARR</u></em><em><u> </u></em><em><u>PLZ</u></em>
Explanation:
<em>Glucose and galactose are monosaccharides that differ from one another only at position C-4. Thus, they are epimers that have an identical configuration in all the positions except in position C-4. ... Glucose and galactose are epimers that do not differ in position C-5 but differ in position C-4.</em>
Answer:
2.13atm
Explanation:
The following information were obtained from the question:
P1 (initial pressure) = 2atm
T1 (initial temperature) = 27°C = 27 + 273 = 300K
T2 (final temperature) = 47°C = 47 + 273 = 320K
P2 (final pressure) =?
Using the equation P1/T1 = P2/T2, the final pressure within the tyre can be obtained as illustrated below:
P1/T1 = P2/T2
2/300 = P2/320
Cross multiply to express in linear form
300 x P2 = 2 x 320
Divide both side by 300
P2 = (2 x 320)/300
P2 = 2.13atm
Therefore, the pressure within the tyre at 47°C is 2.13atm
Can you add more context to your question i’m confused