Answer:
Molar Concentration = 
= 
= 13.33
No. of H+ ions present = 13.33
pH value = - log[13.33]
= -1.12
Explanation:
The equivalence point, or stoichiometric point, of a substance response is the point at which synthetically identical amounts of reactants have been blended. As such, the moles of corrosive are equal to the moles of base, as per the condition (this doesn't really infer a 1:1 molar proportion of acid:base, simply that the proportion is equivalent to in the condition). It tends to be found by methods for a marker, for instance phenolphthalein or methyl orange. The endpoint (identified with, however not equivalent to the equivalence point) alludes to the point at which the marker changes shading in a colorimetric titration.
Answer:
1) first order
2) zero order
3) second order
Explanation:
For a first order reaction, the concentration of the reactants varies exponentially with the rate of reaction. The curve of a first order reaction shows an exponential relationship between the rate of reaction and the change in the concentration of reactants.
For a zero order reaction, the rate of reaction is independent of the concentration of the reactants. So, regardless of the amount of reactant in solution, the rate of reaction is constant.
For a second reaction, the reaction rate increases in direct proportion to the concentration of the reactant in solution.
Answer:
D. water undergoing electrolysis
First you need to know the molecular weight of sugar (C6H12O6) which is 180.156g/mol
You have half a mole so you have 90.078g
If you wanted to make 1L of a 1.2M solution of glucose you would need 180.156*1.2=216.1872g
But you only have 90.078g
So you need to figure out how much this 90.078g will make if the solution must be 1.2M:
90.078g/216.1872g=xL/1L
solve for the X and you get 0.416666666...
so 416.7ml or 0.417L
Answer:
third point
Explanation:
omniscient because it gives info about every character instead of one
hope this helps