Answer:
33.33% = 33%
Explanation:
MgCO3(s) + 2HCl (aq) --> MgCl2(aq) + H20(l) + CO2(g)
1 mole of MCO3 will produce → 1 mole of CO2
We need to get the number of mole of CO2:
and when we have 0.22 g of CO2, so number of mole = mass / molar mass
Moles = 0.22 g / 44 g/mol = 0.005 mole
Moles of Mg = moles of CO2 = 0.005 mole
Mass of Mg = moles * molar mass
= 0.005 * 84 /mol = 0.42 g
Percent of MgCO3 by mass of Mg = 0.42 g / 1.26 * 100
=33.33 %
There are 34 g of oxygen in the container.
We can use the<em> Ideal Gas Law</em> to solve this problem.
But
, so
and

STP is 0 °C and 1 bar, so

Answer:
Sound waves need to travel through a medium such as solids, liquids and gases. The sound waves move through each of these mediums by vibrating the molecules in the matter. The molecules in solids are packed very tightly. Liquids are not packed as tightly.Of the three mediums (gas, liquid, and solid) sound waves travel the slowest through gases, faster through liquids, and fastest through solids. Temperature also affects the speed of sound.Sound waves in air (and any fluid medium) are longitudinal waves because particles of the medium through which the sound is transported vibrate parallel to the direction that the sound wave moves. A vibrating string can create longitudinal waves as depicted in the animation below.
Explanation:
Answer:
6.791
Explanation:
For proper significant figures with addition, you would use the significant figures of the number with lowest decimal place. 6.298 goes to the 10⁻³ place. 0.492712 goes to the 10⁻⁶ place. You will go out to the 10⁻³ place.
6.298 + 0.492712 = 6.790712 ≈ 6.791