Answer:
EXPERIMENT: THE CABBAGE INDICATOR
Here are your goals for this lesson:
Use indicator for each substance to determine if substance is an acid or a base
Summarize results and the experimental method
You can use the natural indicator in red cabbage juice to determine which household liquids are acids or bases. If no change in the color of the cabbage juice takes place, the liquid is neither an acid nor base; it is neutral.
Acids and bases are opposites. When an acids and base are mixed, they neutralize each other. You can use an indicator to see the neutralized reaction. The cabbage juice will change color when the liquids are neutralized.
Online Lab
This video will demonstrate how an indicator, in this case, cabbage indicator, can be used to determine whether a solution is acidic or basic. As you watch the video, remember to record your data and observations to use to present your findings.
Compile a summary of your findings from this experiment. Include your hypothesis, observations, data, and conclusions. Be sure to answer the questions below as well as explaining the method and results.
r.
Explanation:
The answer is (3) CH3COOH. CH3COOH is a acid. It can ionized in water. So the solution can conduct an electric current. And the other three can not be ionized in water.
Answer:
Here's what I get.
Explanation:
The MO diagrams of KrBr, XeCl, and XeBr are shown below.
They are similar, except for the numbering of the valence shell orbitals.
Also, I have drawn the s and p orbitals at the same energy levels for both atoms in the compounds. That is obviously not the case.
However, the MO diagrams are approximately correct.
The ground state electron configuration of KrF is
KrF⁺ will have one less electron than KrF.
You remove the antibonding electron from the highest energy orbital, so the bond order increases.
The KrF bond will be stronger.
Answer:
The average yearly rate of change of carbon-14 during the first 5000 years = 0.0004538 grams per year
Explanation:
Given that the mass of the carbon 14 at the start = 5 gram
At the end of 5,000 years we will have;
Where
A = The amount of carbon 14 left
A₀ = The starting amount of carbon 14
e = Constant = 2.71828
= The half life
t = The time elapsed = 5000 years
λ = 0.693/ = 0.693/5730 = 0.0001209424
Therefore;
A = 5 × e^(-0.0001209424×5000) = 2.7312 grams
Therefore, the amount of carbon 14 decayed in the 5000 years is the difference in mass between the starting amount and the amount left
The amount of carbon 14 decayed = 5 - 2.7312 = 2.2688 grams
The average yearly rate of change of carbon-14 during the first 5000 years is therefore;
2.2688 grams/(5000 years) = 0.0004538 grams per year
The average yearly rate of change of carbon-14 during the first 5000 years = 0.0004538 grams per year.
Answer:
No.
Explanation:
Mercury is not a solution. It is a detonator.