Answer:
Option C :
a chemical formula that shows the relative number of each type of atom in a molecule, using the smallest possible ratio
Explanation:
Empirical Formula:
Empirical formula is the simplest ration of atoms in the molecule but not all numbers of atoms in a compound.
So,
Tha ration of the molecular formula should be divided by whole number to get the simplest ratio of molecule
For Example
C₂H₆O₂ Consist of Carbon (C), Hydrogen (H), and Oxygen (O)
Now
Look at the ratio of these three atoms in the compound
C : H : O
2 : 6 : 2
Divide the ratio by two to get simplest ratio
C : H : O
2/2 : 6/2 : 2/2
1 : 3 : 1
So for the empirical formula the simplest ratio of carbon to hydrogen to oxygen is 1:3:1
So the empirical formula will be
Empirical formula of C₂H₆O₂ = CH₃O
So, Option C is correct :
a chemical formula that shows the relative number of each type of atom in a molecule, using the smallest possible ratio
You have to add a photo to we can understand - Yuno Gasai
<h3>
Answer:</h3>
2.125 g
<h3>
Explanation:</h3>
We have;
- Mass of NaBr sample is 11.97 g
- % composition by mass of Na in the sample is 22.34%
We are required to determine the mass of 9.51 g of a NaBr sample.
- Based on the law of of constant composition, a given sample of a compound will always contain the sample percentage composition of a given element.
In this case,
- A sample of 11.97 g of NaBr contains 22.34% of Na by mass
A sample of 9.51 g of NaBr will also contain 22.345 of Na by mass
% composition of an element by mass = (Mass of element ÷ mass of the compound) × 100
Mass of the element = (% composition of an element × mass of the compound) ÷ 100
Therefore;
Mass of sodium = (22.34% × 9.51 g) ÷ 100
= 2.125 g
Thus, the mass of sodium in 9.51 g of NaBr is 2.125 g
<span>Temperature is defined as the rate at which molecules move or vibrate
</span>