Answer:
319.8 m/min
Explanation:
533 cm/s
We can convert 533 cm/s to m/min by doing the following:
First, we shall convert 533 cm/s to m/s. This can be obtained as illustrated below:
Recall:
100 cm/s = 1 m/s
Therefore,
533 cm/s = 533 cm/s /100 cm/s × 1 m/s
533 cm/s = 5.33 m/s
Finally, we shall convert 5.33 m/s to m/min. This can be obtained as follow:
1 m/s = 60 m/min
Therefore,
5.33 m/s = 5.33 m/s / 1 m/s × 60 m/min
5.33 m/s = 319.8 m/min
Therefore, 533 cm/s is equivalent to 319.8 m/min
It’s deceleration hope that helps!
Answer:
Option A. It has stayed the same.
Explanation:
To answer the question given above, we assumed:
Initial volume (V₁) = V
Initial temperature (T₁) = T
Initial pressure (P₁) = P
From the question given above, the following data were:
Final volume (V₂) = 2V
Final temperature (T₂) = 2T
Final pressure (P₂) =?
The final pressure of the gas can be obtained as follow:
P₁V₁/T₁ = P₂V₂/T₂
PV/T = P₂ × 2V / 2T
Cross multiply
P₂ × 2V × T = PV × 2T
Divide both side by 2V × T
P₂ = PV × 2T / 2V × T
P₂ = P
Thus, the final pressure is the same as the initial pressure.
Option A gives the correct answer to the question.
Answer:
As the amplitude of pendulum motion increases, the period lengthens, because the restoring force −mgsinθ increases more slowly than −mgθ (sinθ≅θ−θ3/3!for small angles).