B. Test a hypothesis by gathering data
Seriously though, what type of guy thinks "oh hey there's a transperent liquid in the science lab? yeah it's water."
They are about 4.5 billion years old. Hope this helps.
<span>To solve this we need to balance the equations first.
So Hg + S --> HgS is balanced
One mole of Hg requires one mole of S to form one mole of HgS.
Number of moles of Sulphur = mass/ molar mass = 157/32 = 4.906
So 4.90 moles of S reacts with 4.90 moles of Hg.
Hence there are 4.90 moles of 4.90 of Hg.
Mass = number of moles * molar mass of Hg
Mass = 4.906 * 200.59 = 982.891g</span>
The answer is B. A good way determine this is how far right the element is on the periodic table. The further right the element is, the more electronegative it is meaning it is more willing to accept an electron. This can be explained using the valence electrons and how many need to be added or removed to complete the octet. The further right you are, the easier it is for the element to just gain a few electrons instead of loose a bunch. Noble gases are the exception to this since they don't normally react though.
<span>Stratosphere. ...Mesosphere. ...Thermosphere. ...Ionosphere. ...<span>Exosphere.</span></span>