Blood flowing into and out your heart makes your pulse
Answer:

Explanation:
Hello!
In this case, since a dilution process implies that the moles of the solute remain the same before and after the addition of diluting water, we can write:

Thus, since we know the volume and concentration of the initial sample, we compute the resulting concentration as shown below:

Best regards!
A sample of an ideal gas has a volume of 2.30 L at 281 K and 1.02 atm. 1.76 atm is the pressure when the volume is 1.41 L and the temperature is 298 K.
<h3>What is Combined Gas Law ?</h3>
This law combined the three gas laws that is (i) Charle's Law (ii) Gay-Lussac's Law and (iii) Boyle's law.
It is expressed as

where,
P₁ = first pressure
P₂ = second pressure
V₁ = first volume
V₂ = second volume
T₁ = first temperature
T₂ = second temperature
Now put the values in above expression we get



P₂ = 1.76 atm
Thus from the above conclusion we can say that A sample of an ideal gas has a volume of 2.30 L at 281 K and 1.02 atm. 1.76 atm is the pressure when the volume is 1.41 L and the temperature is 298 K.
Learn more about the Combined gas Law here: brainly.com/question/13538773
#SPJ4
Answer:

Explanation:
The pressure at the bottom of the tank is:


The force exerted on the circular bottom is:
![F=(73581.921\,Pa)\cdot (\frac{\pi}{4} )\cdot [(12\,ft)\cdot (\frac{0.305\,m}{1\,ft} )]^{2}](https://tex.z-dn.net/?f=F%3D%2873581.921%5C%2CPa%29%5Ccdot%20%28%5Cfrac%7B%5Cpi%7D%7B4%7D%20%29%5Ccdot%20%5B%2812%5C%2Cft%29%5Ccdot%20%28%5Cfrac%7B0.305%5C%2Cm%7D%7B1%5C%2Cft%7D%20%29%5D%5E%7B2%7D)

The answer is -11.2 fahrenheit.