Answer:
Speed will be equal to 1.40 m/sec
Explanation:
Mass of the rubber ball m = 5.24 kg = 0.00524 kg
Spring is compressed by 5.01 cm
So x = 5.01 cm = 0.0501 m
Spring constant k = 8.08 N/m
Frictional force f = 0.031 N
Distance moved by ball d = 15.8 cm = 0.158 m
Energy gained by spring
Energy lost due to friction
So remained energy to move the ball = 0.0101 - 0.0048 = 0.0052 J
This energy will be kinetic energy
v = 1.40 m/sec
Answer:
The average number of calories needed daily represents the average quantity of calories eliminated by human body due to metabolism and must be compensated by eating and drinking.
The amount of calories contained in the food we eat every day must represent the amount of calories eliminated by the body in that time to have a steady weight.
Explanation:
The average number of calories needed daily represents the average quantity of calories eliminated by human body due to metabolism and must be compensated by eating and drinking. If total quantity of calories in the food we consume every day is higher that the average number of calories needed daily, then weight increases by fat accumulation.
Answer:
1. energy lost in the lever due to friction
3. visual estimation of height of the beanbag
5. position of the fulcrum for the lever affecting transfer of energy
Explanation:
Edge 2021
Answer:
1.3823 rad/s
20.7345 m/s
28.66129935 m/s²
2006.29095 N radially outward
Explanation:
r = Radius = 15 m
m = Mass of person = 70 kg
g = Acceleration due to gravity = 9.81 m/s²
Angular velocity is given by
Angular velocity is 1.3823 rad/s
Linear velocity is given by
The linear velocity is 20.7345 m/s
Centripetal acceleration is given by
The centripetal acceleration is 28.66129935 m/s²
Acceleration in terms of g
Centripetal force is given by
The centripetal force is 2006.29095 N radially outward
The torque will be experienced when the centrifuge is speeding up of slowing down i.e., when it is accelerating and decelerating.
Answer:
Power of the string wave will be equal to 5.464 watt
Explanation:
We have given mass per unit length is 0.050 kg/m
Tension in the string T = 60 N
Amplitude of the wave A = 5 cm = 0.05 m
Frequency f = 8 Hz
So angular frequency
Velocity of the string wave is equal to
Power of wave propagation is equal to
So power of the wave will be equal to 5.464 watt