Answer:
C
Explanation:
According to Newton's first law of motion, which states that a body will continue in its state of rest or uniform motion unless acted upon by an external force to change its state of rest or uniform motion. So, the Voyagers spacecraft will continue to move in the same way at the constant speed of 50,000 mph unless acted upon by a force.
Complete question:
At a particular instant, an electron is located at point (P) in a region of space with a uniform magnetic field that is directed vertically and has a magnitude of 3.47 mT. The electron's velocity at that instant is purely horizontal with a magnitude of 2×10⁵ m/s then how long will it take for the particle to pass through point (P) again? Give your answer in nanoseconds.
[<em>Assume that this experiment takes place in deep space so that the effect of gravity is negligible.</em>]
Answer:
The time it will take the particle to pass through point (P) again is 1.639 ns.
Explanation:
F = qvB
Also;

solving this two equations together;

where;
m is the mass of electron = 9.11 x 10⁻³¹ kg
q is the charge of electron = 1.602 x 10⁻¹⁹ C
B is the strength of the magnetic field = 3.47 x 10⁻³ T
substitute these values and solve for t

Therefore, the time it will take the particle to pass through point (P) again is 1.639 ns.
Answer:
mass: it is scalar quantity.
weight:it is a vector quantity.
Answer: 81.619 kJ
Explanation:
Given
Mass of roller coaster is 
It reaches the steepest hill with speed of 
Hill to bottom is 51 m long with inclination of 
Height of the hill is 
Conserving energy to get kinetic energy at bottom
Energy at top=Energy at bottom

<span>The Earth’s internal "((HEAT))" source provides the energy for our dynamic planet, providing it with the driving force for on-going disastrous events such as earthquakes and volcanic eruptions and for plate-tectonic motion. </span>