Answer:
The electric field will be zero at x = ± ∞.
Explanation:
Suppose, A -2.0 nC charge and a +2.0 nC charge are located on the x-axis at x = -1.0 cm and x = +1.0 cm respectively.
We know that,
The electric field is

The electric field vector due to charge one

The electric field vector due to charge second

We need to calculate the electric field
Using formula of net electric field


Put the value into the formula




Put the value into the formula


If x = ∞, then the equation is be satisfied.
Hence, The electric field will be zero at x = ± ∞.
Use the Ideal Gas Law to the air in the tire :
( P ) ( V ) = ( n ) ( R ) ( T )
n = ( P ) ( V ) / ( R ) ( T )
P = P gauge + P baro = 31.2 psig + 14.8 psia = 46 psia
P = ( 46 psia ) ( 1 atm / 14.696 psia ) = 3.13 atm
n = ( P ) ( V ) / ( R ) ( T )
n = ( 3.13 atm ) ( 4.6 L ) / ( 0.08206 atm - L / mol - K ) ( 26.0 + 273.2 K )
n = 0.5864 moles
m = ( n ) ( M )
m = ( 0.5864 mol ) ( 28.96 g/ mol ) = 16.98 g
The energy is 3.06 electronvolts, E = 3.06eV
1eV = 1.6 * 10^-19 J
3.06 eV = 3.06* 1.6 * 10^-19 J = 4.896 * 10^-19 J
Answer:
A chain
Explanation:
A series circuit is a circuit, where the resistors are arranged in a chain. They are aligned like this so the current only has one path to take. The current quantity is the same through each resistor.
If you ever have trouble remembering this you can think of a movie series which goes on and on and on. And remembering a parallel circuit is simpler because everything in the circuit will be parallel!
Answer:
-39.2m/s
Explanation:
Given that :
t = 4secs
g = -9.8m/s^2
v = ?
u = 0m/s ( since it was at rest )
V = u +at............. 1
Where v is the final velocity
a = -g = -9.8m/s^2 since the ball was dropped from a height which will eventually make it move against gravity
t = 4secs
Substitute the values into 1
v = 0 - 9.8×4
v = -39.2m/s