Answer:
0.21 M
Explanation:
Molarity is the calculation of the solution in which the number of solute per liter of the solutions. It is the most common measurement unit that is used to measure the concentration of the solution.
The molarity is the unit that is used to measure or calculate the volume of the solvent. The amount of solvent is used in the chemical reaction.
The amount of the two solvent in the same quantity is measured by the formula called c1v1 and c2v2.
The percent composition of each element can be calculated as follows:
% composition = (mass of element / total mass) * 100
The total mass of the quarter is given to be 5.670 grams
Mass of Cu = 5.198 grams
Mass of Ni = 0.472 grams
Substitute in the above equation to get the mass percentage of each element as follows:
% of Cu = (5.198/5.670) * 100 = 91.675%
% of Ni = (0.472/5.670) * 100 = 8.325%
Answer:
Option 2 and 4 are correct
Explanation:
The reactants in the attached image have more enthalpy and hence less stability as they are more reactive. Thus, Product is more stable than the reactants.
This is an addition reaction in which two reactants add up to form the product.
Very less activation energy is required as the reactants themselves are unstable, possess high energy and hence are very reactive.
Reactants have more energy than the products.
Answer:
the heat rate required to cool down the gas from 535°C until 215°C is -2.5 kW.
Explanation:
assuming ideal gas behaviour:
PV=nRT
therefore
P= 109 Kpa= 1.07575 atm
V= 67 m3/hr = 18.6111 L/s
T= 215 °C = 488 K
R = 0.082 atm L /mol K
n = PV/RT = 109 Kpa = 1.07575 atm * 18.611 L/s /(0.082 atm L/mol K * 488 K)
n= 0.5 mol/s
since the changes in kinetic and potencial energy are negligible, the heat required is equal to the enthalpy change of the gas:
Q= n* Δh = 0.5 mol/s * (- 5 kJ/mol) =2.5 kW