Answer:
<em>The electrons in an atom can only occupy certain allowed energy levels to a lower one</em>, the excess energy is emitted as a photon of light, with its wavelength dependent on the change in electron energy. This is why an atom can only emit specific wavelengths of light and not every possible wavelength.
Answer:
the heat rate required to cool down the gas from 535°C until 215°C is -2.5 kW.
Explanation:
assuming ideal gas behaviour:
PV=nRT
therefore
P= 109 Kpa= 1.07575 atm
V= 67 m3/hr = 18.6111 L/s
T= 215 °C = 488 K
R = 0.082 atm L /mol K
n = PV/RT = 109 Kpa = 1.07575 atm * 18.611 L/s /(0.082 atm L/mol K * 488 K)
n= 0.5 mol/s
since the changes in kinetic and potencial energy are negligible, the heat required is equal to the enthalpy change of the gas:
Q= n* Δh = 0.5 mol/s * (- 5 kJ/mol) =2.5 kW
Answer : The mass of of water present in the jar is, 298.79 g
Solution : Given,
Mass of barium nitrate = 27 g
The solubility of barium nitrate at
is 9.02 gram per 100 ml of water.
As, 9.02 gram of barium nitrate present in 100 ml of water
So, 27 gram of barium nitrate present in
of water
The volume of water is 299.33 ml.
As we know that the density of water at
is 0.9982 g/ml
Now we have to calculate the mass of water.


Therefore, the mass of of water present in the jar is, 298.79 g