Answer:
It lies in in the <u>visible</u><u> </u><u>region</u><u>.</u>
Frequency: <u>is</u><u> </u><u>7</u><u>.</u><u>4</u><u>0</u><u>7</u><u> </u><u>×</u><u> </u><u>1</u><u>0</u><u>^</u><u>-</u><u>1</u><u>4</u><u> </u><u>Hz</u>

Explanation:
V is speed of light.
f is frequency
lambda is the wavelength
One atom of carbon weighs exactly 12/6.022x10^23 = 1.9927x10^-23 grams<span>.</span>
The molar mass of the gas is 77.20 gm/mole.
Explanation:
The data given is:
P = 3.29 atm, V= 4.60 L T= 375 K mass of the gas = 37.96 grams
Using the ideal Gas Law will give the number of moles of the gas. The formula is
PV= nRT (where R = Universal Gas Constant 0.08206 L.atm/ K mole
Also number of moles is not given so applying the formula
n= mass ÷ molar mass of one mole of the gas.
n = m ÷ x ( x molar mass) ( m mass given)
Now putting the values in Ideal Gas Law equation
PV = m ÷ x RT
3.29 × 4.60 = 37.96/x × 0.08206 × 375
15.134 = 1168.1241 ÷ x
15.134x = 1168.1241
x = 1168.1241 ÷ 15.13
x = 77.20 gm/mol
If all the units in the formula are put will get cancel only grams/mole will be there. Molecular weight is given by gm/mole.
Bleh bleh bleh bleh bleh bleh bleh bleh and bleh