Answer:
24 mol Cu
General Formulas and Concepts:
<u>Chemistry</u>
Explanation:
<u>Step 1: Define</u>
RxN: 2Cu (s) + O₂ (g) → 2CuO (s)
Given: 12 moles O₂
<u>Step 2: Stoichiometry</u>
<u />
= 24 mol Cu
<u>Step 3: Check</u>
<em>We are given 2 sig figs.</em>
Our final answer is in 2 sig figs, so no need to round.
The a mixture of 4-tert-butylphenol and 2- chlorobenzoic acid is separate by the by using bicarbonate solvent.
When solution of bicarbonate is added in mixture of 4-tert-butylphenol and 2- chlorobenzoic acid then 2- chlorobenzoic acid form a carboxylate ion whereas 4-tert-butylphenol is underacted and filtered out.
Since, only 2- chlorobenzoic acid which is acid is convert into its conjugate base by solution of bicarbonate in mixture of 4-tert-butylphenol and 2- chlorobenzoic acid .
However, phenol is less acidic than carboxylic acid. Both phenol and carboxylic acid is soluble in organic solvent . At that point as the phenol isolates as an oil, one needs to cool the blend in an ice shower to encourage crystallization
to learn more about 4-tert-butylphenol
brainly.com/question/5274368
#SPJ4
I would say the water is the solvent and carbon dioxide is the solute. Carbon dioxide is usually introduced to water under pressure and then sealed. Once the cap is removed, the carbon dioxide starts to escape since it is then under low pressure. Sometimes, natural groundwater has dissolved carbon dioxide in it but most of our soft drinks have it artificially introduced. Water plus carbon dioxide also form carbonic acid and this can give the tingly sensation on the tongue when drinking soft drinks.
Answer: 4 HCl (g) + O₂ (g) → 2 Cl₂ (g) + 2 H₂O (l)
Explanation:
4 moles of hydrogen chloride (note that it is in the gaseous phase, otherwise it would be hydrochloric acid) react with 1 mole of oxygen gas to form 2 moles of chlorine gas and 2 moles of liquid water.
To conform with the law of conservation of mass, the equation must be balanced, this means that there must be the same number of each type of atom on both sides of the arrow.