(A)energy lost in the lever due to friction
(C)
visual estimation of height of the beanbag
(E)position of the fulcrum for the lever affecting transfer of energy
Answer:
Isabella will not be able to spray Ferdinand.
Explanation:
We'll begin by calculating the time taken for the water to get to the ground from the hose held at 1 m above the ground. This can be obtained as follow:
Height (h) = 1 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =.?
h = ½gt²
1 = ½ × 9.8 × t²
1 = 4.9 × t²
Divide both side by 4.9
t² = 1/4.9
Take the square root of both side
t = √(1/4.9)
t = 0.45 s
Next, we shall determine the horizontal distance travelled by the water. This can be obtained as follow:
Horizontal velocity (u) = 3.5 m/s
Time (t) = 0.45 s
Horizontal distance (s) =?
s = ut
s = 3.5 × 0.45
s = 1.58 m
Finally, we shall compare the distance travelled by the water and the position to which Ferdinand is located to see if they are the same or not. This is illustrated below:
Ferdinand's position = 10 m
Distance travelled by the water = 1.58 m
From the above, we can see that the position of the water (i.e 1.58 m) and that of Ferdinand (i.e 10 m) are not the same. Thus, Isabella will not be able to spray Ferdinand.
Answer:
V_f = 287.04 mL
Explanation:
We are given the initial/original volume of the glycerine as 285 mL.
Now, after it is finally cooled back to 20.0 °C , its volume is given by the formula;
V_f = V_i (1 + βΔT)
Where;
V_f is the final volume
V_i is the original volume = 285 mL
β is the coefficient of expansion of glycerine and from online tables, it has a value of 5.97 × 10^(-4) °C^(−1)
Δt is change in temperature = final temperature - initial temperature = 32 - 20 = 12 °C
Thus, plugging in relevant values;
V_f = 285(1 + (5.97 × 10^(-4) × 12))
V_f = 287.04 mL
No, no me habla espanol. yo soy ingles
Answer:
\Delta E=1.22\times 10^{-22}J
Explanation:
The energy of electron in any state is given by
here h is planck's constant n is state of electron L is the infinte potential well m is the mass of electron
We know that 
Potential well dimension = 
Mass of electron 
So energy required to electron to jump from ground state to 3rd state


