Answer:
Explanation:
The formula for this is
where F is the gravitational force, G is the gravitational constant, m1 is the mass of one object and m2 is the mass of the other object. We are looking for r, the distance between the centers of their masses.
Filling in:
and moving things around to solve for r:
Doing all that and rounding to the 3 sig fig's you need gives us a distance of 1.55 m
Answer:
A) The speed of the water must be 8.30 m/s.
B) Total kinetic energy created by this maneuver is 70.12 Joules.
Explanation:
A) Mass of squid with water = 6.50 kg
Mass of water in squid cavuty = 1.55 kg
Mass of squid = 
Velocity achieved by squid = 
Momentum gained by squid = 
Mass of water = 
Velocity by which water was released by squid = 
Momentum gained by water but in opposite direction = 
P = P'


B) Kinetic energy does the squid create by this maneuver:
Kinetic energy of squid = K.E =
Kinetic energy of water = K.E' = 
Total kinetic energy created by this maneuver:


Magnitude of the force of tension: 139 N
Explanation:
The surface of the ramp here is assumed to be the positive x-direction.
To solve this problem and find the magnitude of the force of tension, we have to analyze only the situation along the x-direction, since the force of tension lie in this direction.
There are three forces acting along the x-direction:
- The force of tension,
, acting up along the plane - The force of friction,
, acting down along the plane - The component of the weight in the x-direction,
, acting down along the plane
We know that the magnitude of the weight is

So its x-component is

The net force along the x-direction can be written as

And therefore, since the net force is 98 N, we can find the magnitude of the force of tension:

Learn more about inclined planes:
brainly.com/question/5884009
#LearnwithBrainly
Answer:
The second ball
Explanation:
Both balls are under the effect of gravity, accelerating with exactly the same value. The first ball is dropped, therefore its initial velocity is zero. Since the second ball has horizontal and vertical velocity components, its initial velocity is given by:

The vertical component is zero, however, it has a horizontal velocity, so its initial speed is not zero, therefore the secong ball has the greater speed at ground level.